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Abstract
The rise of large scale machine learning models has generated un-
precedented requirements and demand on computing hardware to
enable these trillion parameter models. However, the importance
of these bleeding-edge chips to the global economy, technological
advancement, and strategic national interests have made them tar-
gets of sanctions. Recent advanced computing sanctions set limits
on a device’s Total Processing Performance, device bandwidth, and
Performance Density and placed export controls on flagship data
center and consumer products.

In this work, we present the first study on the architectural
and economic externality implications of these advanced computing
sanctions and their effects on large language model (LLM) inference.
We identify which architectural parameters are limited under ex-
isting regulations, and perform thorough design space exploration
of compliant designs. Optimized designs are able to improve LLM
inference prefill performance by 4% and decoding performance by
27% compared to a restricted device baseline.

We then demonstrate how an architecture-first approach for
computing policies allows chip designers and policymakers to craft
efficient guidelines that achieve desired goals while minimizing
negative externalities. We show how architectural features can
unify marketing-based data center vs. non-data center regulations
and how policies can be specified to create gaming-focused de-
vice architectures which are inherently limited in AI performance.
Augmenting existing performance metrics with insightful architec-
tural constraints better predict workload performance. Combined
metrics achieved up to 42.4x narrower distributions compared to
using theoretical compute performance alone, enable targeted and
efficient policies.

CCS Concepts
• Computer systems organization → Architectures; • Social
and professional topics→ Import / export controls; • Com-
puting methodologies→ Artificial intelligence.
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(a) Device Classification Under October 2022 Specifica-
tions [14]. Inspired by [29].
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(b) Device Classification Under October 2023 Specifica-
tions [16]. Inspired by [11].

Figure 1: Device Classification Under October 2022 and October 2023
Advance Computing Rule Specifications. Data from [1, 2, 24, 49, 52–
54, 56, 67, 75]
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1 Introduction
Semiconductors and computer chips have become indispensable
foundational technologies and securing performant computing has
become key objectives for companies and governments alike. The
prevalence of machine learning has fueled demand for graphics
processing units, data center accelerators, and novel hardware devel-
opments to enable larger, more accurate, and more capable models.
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The recent meteoric rise of large language models (LLMs) has again
emphasized the importance of hardware. As LLM capabilities scale
by increasing model sizes, state-of-the-art models are reaching bil-
lions and trillions of parameters [10, 25]. To train and provide ML
and LLMs services, companies must use bleeding-edge chips in
order to efficiently develop these massive models [2, 54].

Machine learning, LLMs, and computing hardware have become
crucial tenets of technology companies as well as strategic govern-
ment priorities worldwide. As firms aim to maintain competitive
advantages, acquiring state of the art hardware has become a major
bottleneck due to their complex manufacturing, vulnerable supply
chains, and in turn high costs [32, 34, 35, 47, 79]. To protect strategic
interests, governments have also imposed high profile sanctions on
the devices used to train and run AI applications, making it difficult
for some firms to develop their desired models.

Sanctions targeting advanced computing introduced in October
2022 placed export restrictions on chips that exceed performance
based thresholds [14, 16]. Figure 1 shows how some devices have
been classified under these regulations. These sanctions introduce
performance limits which are disparate from how computer archi-
tects usually approach chip design. Traditionally, architects focus
on optimizing performance within physical and cost constraints.
However to comply with these export restrictions, performance and
die area are now primary constraints and designers have modified
designs to meet these new criteria in order to keep selling chips to
fuel worldwide computing demand [37, 45]. Furthermore, although
regulations focus on restricting flagship data center designs used
for AI applications, updated regulations may require powerful “non-
data center marketed” devices to also obtain export licenses. The
licensing requirements are ultimately decided on a case-by-case
basis which further complicates compliance [16].

Due to the recency of these regulations, manufacturers have
focused on modifying existing product lines to create compliant
designs [37, 45]. However, this often involves taking more powerful
dies and disabling functionality until the device is under the export
controls’ thresholds. This is inefficient as it reduces the proportion
of dies which are used for more profitable flagship devices and these
performance-capped dies are larger compared to creating custom
regulation-specific dies.

In this work, we present the first architectural exploration of LLM
inference performance under these new sanctions. We demonstrate
how chip architecture can be optimized within existing sanction
definitions and improve on LLM prefill and decoding compared to
a sanctioned device baseline. Additionally, we use our insights to
propose architectural indicators which better predict performance
for modern workloads compared to current metrics used for device
classification.

Furthermore, we show how an architecture-first approach to
hardware policy can reduce the economic negative externalities in-
troduced by current regulations. By understanding the unique archi-
tectural feature and bottlenecks of different product segments and
workloads respectively, policy specifications and hardware architec-
tures can be domain-tailored to be inherently performance limited
for workloads-of-interest. We show how policy can be scoped to cre-
ate gaming-focused hardware which are architecturally limited in
AI performance. This enables better targeted policies which reduce
market distortions introduced by regulations.

Table 1: Advanced Computing Rule Definitions

(a) October 2022 Definitions [14]

Class. All Devices
Regular
License TPP ≥ 4800 AND Bidirectional Device BW ≥ 600 GB/s

(b) October 2023 Definitions [16]

Class. Data center Non-data center
Regular
License

TPP ≥ 4800
OR TPP ≥ 1600 AND PD ≥ 5.92 -

Notified
Advanced
Computing

4800 > TPP ≥ 2400 AND 5.92 > PD ≥ 1.6
OR TPP ≥ 1600 AND 5.92 > PD ≥ 3.2 TPP ≥ 4800

This work makes the following contributions:
• Detailed overview on which architectural components are
limited by advanced computing rules.

• Thorough design space exploration of LLM inference chip
architectures under these constraints including quantitative
performance, die area, and cost analysis.

• Regulation compliant hardware optimizations that improve
LLM inference prefill and decoding performance by up to 4%
and 27% respectively compared to a modeled NVIDIA A100.

• Architectural performance indicators that better correlate
with modern workload performance compared to existing
metrics and reduce performance variation by up to 42.4x.

• An architecture-first approach which creates fine-grained
and efficient policies that reduce negative externalities.

2 Background and Motivation
2.1 Advanced Computing Rule Sanctions
Chips and computing are often targeted by sanctions and export
controls due to the importance of semiconductors within the global
economy, strategic national interests, and concentrated supply
chains. These sanctions often target specific computing applica-
tions and/or semiconductor manufacturing. For example, the United
States has export controls regarding cryptography, including inte-
grated circuits used for encryption [13]. The multilateral Wasse-
naar Arrangement has specific restrictions regarding electronics
and computers that have dual-use applications [9]. The 2019-2023
Japan-South Korea trade dispute focused on restricting Japanese
exports of semiconductor manufacturing chemicals to South Ko-
rea [39]. Japanese companies produce over 90% of the world’s flu-
orinated polyimides and photoresists and account for over 92%
of South Korean’s supply of these chemicals, while South Korea
manufactures 73% of the global DRAM and 51% of global NAND
flash markets [30, 65].

In October 2022, the United States’ Department of Commerce’s
Bureau of Industry and Security (BIS) introduced new export con-
trols on advanced computing chips dubbed the Advanced Comput-
ing Rule (ACR), which applies to the following devices (referred to
as “integrated circuits” in the regulations) that can achieve an ag-
gregate bidirectional I/O transfer rate over 600 Gbyte/s AND
achieves aggregate Total Processing Performance (TPP) over
4800 [14]. The October 2022 ACR is also summarized in Table 1a.

Total Processing Performance (TPP) is defined as the theoreti-
cal maximum tera (1012) operations per second (TOPS) multiplied

2



Chip Architectures Under Advanced Computing Sanctions ISCA ’25 (to appear), June 21–25, 2025, Tokyo, Japan

by the bitwidth of the operation. For devices that can operate on
multiple bitwidths, TPP is determined by the max TOPS × bitwidth
product. TPP is aggregated over all the dies within a package, such
as chiplet devices. TPP is calculated based on non sparse opera-
tion performance. The guidelines also consider “tensor operations",
which may combine a floating point multiply and accumulate as a
single operations, as two operations when calculating TPP.

In October 2023, the advanced computing rule was modified to
remove the I/O transfer rate restriction and introduced Performance
Density (PD) thresholds. Performance density is defined as a de-
vice’s TPP divided by applicable die area (measured in mm2) [16].
Applicable die area only applies to dies in the device manufactured
using a non-planar transistor architecture (e.g. sub 16nm FinFETs).
The new rules differentiate between "data center" and "non-data
center" designed/marketed devices - some data center and all non-
data center devices can qualify for Notified Advanced Computing
(NAC) license exceptions to allow exports with potentially fewer
restrictions. The updated rules are described in Table 1b.

In December 2024, the BIS added new export controls on com-
modity high bandwidth memory (HBM) packages [17]. HBM pack-
ages with a “memory bandwidth density”, which is defined as the
memory bandwidth of the package divided by the package’s area,
greater than 2 GB/s/mm2 are subject to this export control. Pack-
ages with a memory bandwidth density less than 3.3 GB/s/mm2

may apply for license exception HBM which would allow exports
to sanctioned countries if granted. This regulation does not apply
to HBM which is installed inside computing devices before export.
January 2025’s proposed regulation added further licensing require-
ments for “front-end fabricators” and outsourced semiconductor
assembly and test (OSAT) firms who manufacture export-controlled
devices, as well as introduced new policies and licensing require-
ments that limit the quantity of AI-focused devices that can be
exported to non-sanctioned countries [18, 19].

2.2 Sanctions’ Effect On Chip Architecture
The October 2022 and October 2023 specifications target device
performance and architectural features and chip designers have
adapted their existing designs in order to keep selling their devices
under the new regulations. Currently, the October 2023 specifica-
tion are still in affect, as December 2024 and proposed January
2025 updates did not change device-level export controls. In Oc-
tober 2022, the flagship data center GPUs were the NVIDIA H100
(announced March 2022) and AMD MI250X (launched November
2021) [1, 72]. The NVIDIA H100 [54] has a TPP of 15824 and device
bandwidth of 900 GB/s. The AMD MI250X [1] has a TPP of 6128
and device bandwidth of 800 GB/s. The NVIDIA A100 [53] was the
flagship device available in October 2022, and has a TPP of 4992
and device bandwidth of 600 GB/s. The October 2022 specifications
generally only applies to powerful flagship devices.

Firms have modified their flagship products to comply with re-
strictions. The October 2022 definitions do not apply to devices
with either TPP < 4800 or device bandwidth < 600 GB/s, so man-
ufacturers only had to reduce one parameter to comply with the
regulations. The NVIDIA A800 [52] (released in August 2022) uses
the same GA100 die as the sanctioned A100, but reduces the device
bandwidth to 400 GB/s while maintaining the same 4992 TPP. The

NVIDIA H800 [56] similarly has 15824 TPP and 400 GB/s which is
based on the sanctioned H100.

The October 2023 updates and new PD requirements now sanc-
tion the previously regulation-specific devices such as the NVIDIA
A800 (PD 6.04) and H800 (PD 19.45). The AMD MI210 data center
GPU [1] (2896 TPP, 300 GB/s, PD 3.76) was previously unregulated,
but now requires NAC exception for export. Similarly, with the
new distinction between data center and non data center devices,
NVIDIA’s RTX 4090 gaming GPU [55] (5285 TPP, 32 GB/s, 8.68 PD)
also now requires NAC exceptions.

Firms have again adapted to new regulations. NVIDIA in No-
vember 2023 announced new devices: H20, L20, and L2 which will
comply with the updated October 2023 data center devices reg-
ulations [45]. NVIDIA also launched the RTX 4090D [50] (4708
TPP) which is based on the same AD102 die as the RTX 4090 but
disables more compute cores (114 vs 128) to avoid the 4800 TPP
threshold for non data center chips. AMD has also attempted to
create sanction specific devices but have faced regulatory approval
issues. The AMD’s regulation-specific MI309 was denied export
approval under the October 2023 specifications and it is unknown
why the device was not approved [38].

2.3 Large Die Area GPU Designs
Recent flagship data center device dies have reach the near physical
limit of die sizes or have used chiplets to achieve 1000+mm2 devices.
As chip designers strive to improve single device performance
and transistor scaling plateaus, total die area has increased. Larger
dies are prone to manufacturing defects and reduced die yields;
flagship devices are often fabricated on bleeding edge process nodes,
which are less mature and more prone to defects. There are also
physical limits of manufacturing, and current EUV technology
limits single dies to around 860mm2 [63]. Furthermore, fewer larger
dies fit onto a single wafer and firms will need to order more wafers,
increasing costs and manufacturing times compared to smaller
dies [47]. These two effects compound and make manufacturing
large chips expensive.

To ameliorate these design challenges, firms have turned to
binning and chiplet designs to create multiple product lines from
the same dies - both these tactics are motivated by cost. Binning
allows partially defective chips to be salvaged to be reused in less
powerful products, and chiplet devices split designs across multiple
smaller dies which improves overall product yield compared to
monolithic designs.

Both versions of the advanced computing rules have influenced
how firms approach large die area designs. NVIDIA A800 and H800
devices uses the same dies as the A100 and H100 respectively and
could be made from partially defective dies where the device band-
width performance did not meet the 100 series’ specifications or
intentionally disabled to comply with regulations [37, 46]. TPP is
calculated based on all the dies on the device, but chiplet based
devices can reduce TPP or device bandwidth by reducing compute
chiplet or IO chiplet counts respectively.

For the October 2023 definitions, large monolithic dies can de-
crease TPP and performance density by disabling compute cores;
this was done for the NVIDIA H20 [45]. For chiplet based devices,
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Figure 2: Device Die Area and Total Processing Performance Under
October 2023 Specifications [16] - Devices can avoid ACR by increas-
ing die area. Data from [24, 67, 75]

removing chiplets may reduce TPP, but may not reduce perfor-
mance density since die area decreases as well. For chiplet designs
to comply with existing PD restrictions, devices may need to dis-
able computing cores within chiplets, which opposes the original
motivation of using smaller chiplet designs to reduce die defects.

2.4 Market Distortions and Negative
Externalities

In terms of economics, sanctions introducemarket distortion, which
is any interference between buyers and sellers where prices no
longer reflect free-market conditions [26]. Current sanctions essen-
tially reduce the supply of computing devices available, which in
turn increases prices for companies who want to buy these chips.
This market condition where supply and demand are artificially
imbalanced is known as deadweight loss [44].

The October 2023 ACRs created separate classification guidelines
between data center and non-data center devices. Although the
updates ultimately required more devices to acquire licensing, the
data center vs non-data center distinction recognizes that not all
high performance devices are designed for the AI applications the
sanctions are targeting [15]. These updated definitions introduced
negative externalities: actions taken by one party causing indirect
adverse effects on uninvolved third parties [44]. Regulations tar-
geting powerful AI devices also required powerful gaming focused
devices to acquire export licenses. The updated regulations reduced
the global availability of data center and non-data center devices,
increasing overall deadweight loss.

2.5 Motivation
The ACRs’ restrictions are seemingly counter-intuitive to how com-
puter architects may approach chip design. Traditionally, architects
optimize their designs for power, performance, and area - either
targeting/maximizing performance while minimizing device power
and area. Moreover, the regulations were changed only a year after
the initial specifications were announced. Chip design cycles can
span multiple years and sudden regulation changes make it difficult
and expensive for device manufacturers to adapt [3].

Figure 3: Architecture-First Policy Overview. Only regulating rele-
vant architectural features creates fine-grained, efficient policies.

ACRs essentially add ceilings on theoretical device performance,
as TPP sets limits on maximum operations per second, and prac-
tically only regulates “AI compute performance" such as NVIDIA
Tensor Cores and AMDMatrix Cores. These cores are generally not
crucial for gaming performance. Furthermore, the PD metric acts as
a floor on die area. Figure 2 shows the October 2023 specifications
based on die area rather than performance density. By keeping TPP
constant and increasing die area, devices can avoid ACR export
restrictions. For the October 2023 definitions, in order for a device
with 2399 TPP to avoid the restrictions, the device needs to have a
die area greater than 750 mm2. For a 1600 TPP device to be NAC
eligible, it needs to have a die area greater than 270 mm2.

For a 4799 TPP design to avoid export restrictions, the device
must have total die area greater than 3000 mm2, which is more than
three times greater than the current reticle limit. Compliant designs
must be multi-chip module designs, which add an additional design
space for die sizing to optimize performance as well as cost.

These theoretical performance limits may not reflect actual work-
load performance, as they focus on the compute component of a
system and not the rest of the architecture. Furthermore, these
metrics stem from compute regulations from the 1990s, and mod-
ern computers, workloads, and export control motivations have
changed drastically in the past 30 years [8]. By only specifying TPP,
device bandwidth, and performance density limits, there remains a
large design space where designers can improve performance. In
this work, we conduct a thorough architectural design space study
on how chips can be optimized under the existing specifications.
By providing detailed breakdowns on how key workloads are af-
fected by current sanctions, computer architects can reason about
which architectural improvements to focus on while also following
current and future export control regulations.

Additionally, although sanctions target computing hardware,
regulations are scoped to curtail specific workloads. However, the
devices covered by the sanctions are used for multiple workloads
with different architectural bottlenecks. For example, GPUs are
often used in AI and stockpile stewardship applications, but are
also used for gaming and weather forecasting [36, 57]. We use chip
architecture insights to develop modern architecture-first perfor-
mance predictors and propose efficient policy which only affects
the product segment or workload-of-interest, as shown in Figure 3.

4



Chip Architectures Under Advanced Computing Sanctions ISCA ’25 (to appear), June 21–25, 2025, Tokyo, Japan

Governments and researchers globally have proposed new poli-
cies which may regulate computing hardware with respect to sus-
tainability [27, 66], AI safety [60], cryptocurrency mining [31], etc.
Moreover, the mercurial nature of politics contrasts multi-year long
semiconductor design cycles, and suddenly regulation changes may
further disrupt product roadmaps and profits for hardware manu-
facturers. Our proposed architecture-first approach for hardware
policy sets a framework where computer architects work with pol-
icy makers to scope regulations to affect only the most relevant
architectural features and manufacturers can continue to sell opti-
mized devices for non-target workloads, which increases revenue
and reduces negative externalities.

3 Methodology
In this section, we provide background on large language models
and LLM inference performance metrics, the LLMCompass [82]
evaluation framework we use for architectural design space explo-
ration, and overview how we interpret the advanced computing
rules and their effects on chip architecture.

3.1 LLMs and Performance Metrics
Although artificial intelligence applies to a wide range of workloads,
LLMs have become the leadingmodel architecture. LLMs aremodels
with a large amount of parameters that have been pre-trained on
large corpora of data. In this work, we focus on Decoder-only
Transformer models, which are the most popular variant and are
adopted by LLaMA [28, 71], GPT-3 [10], PaLM [22], etc. LLMs are
comprised of stacks of identical Transformer layers.

LLM inference can be divided into two separate phases: (1) Prefill
- after receiving the input prompt, all the input tokens are processed
in parallel to generate the first token and the KV cache. (2) Decoding
- afterwards, the output tokens are generated one by one in an auto-
regressive manner. Two key performance metrics for LLM inference
are (1) time to first token (TTFT) - the latency of the prefill stage
and (2) time between tokens (TBT) - the per-token latency of the
decoding stage. TTFT and TBT can be used to derive performance
metrics such as end-to-end latency and throughput.

A common metric used for evaluating LLM hardware perfor-
mance is model FLOPs utilization (MFU), defined as the ratio of the
observed throughput relative to the theoretical maximum through-
put of a system operating at peak FLOPs [22]. Related work [82]
shows that LLM inference can achieve near peak theoretical FLOPs
during the compute-intensive prefill stage but suffer from low uti-
lization during the memory-intensive decoding stage. LLM oper-
ations such as Softmax, LayerNorm, and GeLU have low arith-
metic intensities and cannot achieve high throughput during infer-
ence [81].

3.2 LLMCompass Framework
In this work, we use LLMCompass to explore how different hard-
ware designs affect LLM inference [82]. LLMCompass is a high-level
hardware simulation framework tailored for LLM workloads. Fig-
ure 4 shows the hardware template used by LLMCompass. Each
device has multiple cores, a shared global buffer between cores,

Device

...

CoreMem
PHY

Device
PHY

Global
Buffer

Core

Local
Buffer

Lane
Vector Unit

Systolic
Array

...
...

...

Figure 4: LLMCompass’ Hardware Template. Systolic array size, lane
count, and cores per device configurations determine TPP.

Table 2: Model Architectures

Parameter GPT-3 175B [10] LLaMA 3 8B [28]
Number of Layers 96 32
Model Dimension 12288 4096
FFN Dimension 49152 14336
Attention Heads 96 32

K/V Heads 96 8
Activation Function GELU SwiGLU

which is connected to the off-chip memory and device-device inter-
connect. Each core can have multiple lanes sharing a local buffer.
Each lane is composed of a vector unit and a systolic array.

We configure LLMCompass to evaluate the computational pat-
terns of two models: GPT-3 175B [10] and Llama 3 8B [28]. The
model architectures are summarized in Table 2. To model Llama 3
8B, we used a modified version of LLMCompass which supports
grouped-query attention [5] and SwiGLU activation [61]. As LLMs
are composed of stacks of repeated transformer layers, we only
need to simulate and report results for one layer. For each model,
we simulate a standard layer with batch size 32, input sequence
length 2048, and output sequence 1024, which is a typical setting
for LLM inference workloads ran on flagship data center GPUs.

3.3 Interpreting The Specifications
The ACRs specify limits on TPP and device bandwidth/performance
density. While device bandwidth and PD are straightforward to cal-
culate, TPP requires more nuance to translate to chip architecture.
TPP is calculated using peak theoretical performance reported by
device manufacturers. Although the exact way these theoretical
peaks are derived is unknown, they can generally be calculated by
multiplying the total number of operations a device can compute in
a single cycle by the device clock frequency. GPU manufacturers re-
port tensor/matrix compute theoretical peaks separately from their
vector compute peaks, as they achieve higher performance which is
used when calculating TPP. With LLMCompass, we calculate TPP
based on the systolic array’s configuration.

Each systolic array can compute 𝐷𝐼𝑀𝑋 * 𝐷𝐼𝑀𝑌 MAC-OPs/cycle
and each multiply-and-accumulate is counted as two FLOPs. We
configure LLMCompass such that each lane has one systolic array,
and each core can have multiple lanes. We use the NVIDIA A100’s
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Figure 5: Prefill and Decoding Latency Modeling GPT-3 175B, Sweep-
ing TPP or Device Bandwidth for October 2022 Specifications. White
circle markers have device bandwidth < 600 GB/s and black square
markers have TPP < 4800. Green triangle denotes modeled A100.

1410 MHz clock frequency and use FP16 systolic arrays to calculate
the maximum FP16 units that can be used for systolic arrays in
single device.

For a GPU-like device with systolic arrays to be under a given
TPP, the configuration must meet the following:

𝐹𝑃𝑚𝑎𝑥 (𝑇𝑃𝑃) ≥ 𝐷𝐼𝑀𝑋 ∗ 𝐷𝐼𝑀𝑌 ∗ 𝐿𝐶 ∗𝐶𝐷 (1)
where 𝐹𝑃𝑚𝑎𝑥 (𝑇𝑃𝑃) is the maximum number of systolic array

FPUs for a given 𝑇𝑃𝑃 and device clock frequency, 𝐷𝐼𝑀𝑋 * 𝐷𝐼𝑀𝑌

are the dimensions of the systolic arrays, 𝐿𝐶 is the lanes per core,
and 𝐶𝐷 is cores per device. In our experiments, we sweep systolic
array dimensions and lanes per core count and change cores per
device accordingly to keep design points within TPP targets. To
limit device bandwidth, we change the device PHY counts and per
PHY bandwidth in LLMCompass. To calculate performance density,
we use LLMCompass’ area and cost model to find the design’s die
area and silicon costs. These estimates are based on the 7nm process
which is the same process used by the NVIDIA A100’s dies.

4 Chip Architecture Optimization Under
Advanced Computing Rules

In this section, we perform design space explorations to evaluate the
architectural implications of current regulations and demonstrate
how chips can be optimized for LLM inference under advanced
computing rules. Reported latency results in this section and Sec. 5.3
are simulated using LLMCompass, including results for the modeled
NVIDIA A100. Die area results in this section and Sec. 5.3 come
from LLMCompass but we use the GA100 [53] die area for the
modeled A100.

4.1 Oct. 2022 - TPP vs Bandwidth Scaling
Under the October 2022 specifications, devices can avoid ACR re-
strictions if they have either TPP < 4800 or device bandwidth < 600
GB/s. These definitions allow device manufacturers to continue to
scale one of these “knobs”. Between October 2022 to October 2023,
regulation specific devices have capped device bandwidth while
increasing TPP (NVIDIA A800, H800), while recent devices have
capped TPP with increased device bandwidth (NVIDIA H20).

To explore the trade offs of TPP vs device bandwidth scaling, we
configure LLMCompass based on the NVIDIA A100’s architecture.

Table 3: Design Space Exploration Parameters Compared to
A100 (GA100)

Parameter A100 (GA100) [53] DSE
Core Count 108 (128) -

Systolic Array Dim. 16x16 16x16, 32x32
Lanes per Core 4 1, 2, 4, 8

Private L1 Cache (KB) 192 192, 256, 512, 1024
Shared L2 Cache (MB) 40 (48) 32, 48, 64, 80

HBM Mem. Capacity (GB) 40/80 80
HBM Bandwidth (TB/s) 2 (2.4) 2, 2.4, 2.8, 3.2

Device Bandwidth (GB/s) 600 Fig. 6: 600
Fig. 7: 500, 700, 900

For the devices with capped TPP < 4800, we set device core count
to 103 (TPP 4759) and sweep device-to-device PHY count. Similarly,
we set devices with capped device bandwidth < 600 GB/s by re-
ducing per device-to-device PHY bandwidth and sweep core count.
Figure 5 shows the TTFT and TBT results of these two parameter
sweeps simulating GPT-3 175B. White circle markers are config-
urations with fixed device bandwidth and labeled TPP and black
square markers have fixed TPP and labeled device bandwidth. All
configurations are not regulated by the October 2022 ACR except
the NVIDIA A100.

The results show that increasing TPP/core count is better for
reducing TTFT latency and increasing device bandwidth is better
for reducing TBT latency. This is in line with expectations, as the
prefill stage is generally compute bound while decoding stage is
bandwidth bound. Although decoding latency is more sensitive to
device bandwidth, the effect is minimal - increasing device band-
width from 600 GB/s to 1000 GB/s only decreases TBT by 0.27%.
Increasing TPP to decrease prefill latency is much more rewarding.
Increasing TPP from 4000 to 5000 decreases TTFT by 16.2%.

Increasing TPP or device bandwidth also increases die area. The
7000 TPP configuration decreases TTFT by 34.1% compared to 4000
TPP, but the die area also increases by 48.3%. With a die area of 854
mm2, the 7000 TPP design is at the reticle limit and is unlikely for
all cores to be fully functional. In summary, the October 2022 speci-
fications allow prefill latency improvements by scaling TPP/core
count but may be capped by die area constraints. The specifications
also prevent significant decoding latency improvements when only
scaling TPP or device bandwidth.

4.2 Oct. 2022 - Design Space Exploration
Although the October 2022 specifications only set limits on TPP
and device bandwidth, there are many architectural parameters
that can still be changed which affect workload performance while
complying with ACRs. As previously discussed in Section 3.3, TPP
limits total systolic array FPU count, but does not further regulate
how these systolic arrays are configured. Moreover, there are no
limits on how the memory system is configured. We study this de-
sign space by configuring design point s to have TPP near 4800 and
device bandwidth = 600 GB/s and sweep architectural parameters
as show in Table 3 (512 total designs). LLM inference performance
results are shown in Figure 6. The NVIDIA A100 is again shown
for reference but does not comply with ACRs. Many design points
have die areas larger than the reticle limit - designs with die areas
larger than 860mm2 have white markers.
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Figure 6: Prefill, Decoding, and Die Area for 4800 TPP, 600 Device BW Design Space Exploration Modeling GPT-3 175B and Llama 3 8B. Marker
shape indicates the design point’s memory bandwidth. Marker color indicates the design point’s systolic array configuration. White markers
violate the 860mm2 reticle limit. Green triangle denotes modeled A100.

Prefill is compute bound which makes it difficult to decrease
TTFT latency while TPP is limited. However, design points exist
where October 2022 ACR compliant designs have lower TTFT com-
pared to the A100. Numerous design points are able to achieve
lower TBT latency, as decoding is memory bandwidth bound. Fig-
ures 6b and 6e show clear levels of decoding performance grouped
by memory bandwidth (shown by marker shape).

Figures 6c and 6f show that there are ACR compliant designs
which improve on prefill and decoding latency compared to the
A100, but many of these designs have die areas larger than the
reticle limit. When only considering manufacturable single die
designs, GPT-3’s optimized design decreases TTFT by 1.2% and
TBT by 27% compared to an A100 baseline. This configuration is
similar to the A100, but decreases lanes per core to 2, increases L2
cache to 64 MB, and maximizes memory bandwidth to 3.2 TB/s. The
Llama 3 optimized design decreases TTFT by 4% and TBT by 14.2%.
This configuration differs from the A100 with 512 KB L1 caches, 64
MB L2 cache, and 3.2 TB/s memory bandwidth.

Decreasing lane count or increase L1 cache size increases the
effective private cache size per systolic array, increasing L2 cache
size helps with the compute bound prefill stage, and increasing
memory bandwidth significantly improves decoding performance.
GPT-3’s and Llama 3’s designs’ die areas are 856 mm2 and 823 mm2

respectively. GPT-3’s configuration is on the edge of manufactura-
bility, but shows how chip architectures can continue to improve
LLM inference performance under October 2022 ACRs.

4.3 Oct. 2023 - Design Space Exploration
The October 2023 ACR updates removed the device bandwidth re-
strictions, introduced performance density, and created new tiers
of restrictions depending on TPP and performance density. As pre-
viously discussed, PD adds a minimum die area requirement for
ACR compliant designs. Increasing die area may improve work-
load performance but may lead to diminishing returns, especially
when TPP is also limited. moreover, the decreased die yield and
increased silicon cost may eventually outweigh the performance
improvements.

We perform a large design space exploration for 1600, 2400,
and 4800 TPP designs under the October 2023 specifications. The
sweeped architectural parameters are shown in Table 3 (1536 de-
signs per TPP). These selected TPPs are used in the October 2023
ACR definitions, each with different performance density cut offs.
We classify designs based on the performance density to not be
regulated by the ACRs, as NAC eligible devices may not always be
granted export licenses [38]. LLM inference performance results are
shown in Figure 7. Marker shape and color indicate TPP, and white
markers indicate designs that either violate performance density
or reticle limits.

The low performance density requirement make all 4800 TPP
designs invalid and reducing TTFT latency becomes impractical.
Even for compliant 2400 TPP designs, the fastest TTFT is still 78.8%
and 54.6% slower compared to the A100’s for GPT-3 and Llama 3
respectively. However, decoding performance can still be improved
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Figure 7: Prefill, Decoding, and Die Area for 1600, 2400, and 4800 TPP Devices Design Space Exploration Modeling GPT-3 175B and Llama 3 8B.
White markers indicate devices that violate PD limits or the 860mm2 reticle limit. Green triangle denotes modeled A100.

Table 4: GPT-3 175B Performance Density Compliant Designs
Optimal Design Comparison

Parameter PD Compliant Non-Compliant
Die Area 753 mm2 523 mm2

PD 3.18 4.59
TTFT 465 ms 470 ms
TBT 1.062 ms 1.053 ms

Silicon Die Cost (7nm) $134 $88
1M Good Dies Cost (7nm) $350M $177M

because memory bandwidth is not regulated. The fastest TBT for
1600 and 2400 TPP designs running GPT-3 are 20.9% and 26.1%
faster respectively compared to the A100’s; the fastest TBT Llama
3 designs are 12.0% and 12.8% faster. Therefore, the October 2023
specifications are more effective at preventing prefill performance
improvements, but still allow decoding improvements.

4.4 Oct. 2023 - Performance Density and Cost
Performance density restrictions for 2400 TPP designs and the
reticle limit only allows a 110 mm2 area budget range for single die
designs, even though it is possible to achieve similar performance
with less die area. From the 1536 design points, there are only 56
valid 2400 TPP designs - 1429 designs violate performance density
and 51 violate the reticle limit.

Table 4 shows the fastest TTFT design for GPT-3 for PD com-
pliant and non-compliant 2400 TPP designs. Despite both designs

having similar performance, the PD compliant design is 44% larger
and silicon costs are 52.3% higher compared to the non-compliant
design. Factoring in die yield, the cost for 1 million good dies is
almost double the cost for the PD compliant design.

Minimumdie area requirements also increase device power. Com-
paring the two devices, they have identical architectures except for
cache configuration, where the PD compliant device has 1 MB L1
cache and 48 MB L2 cache, while the non-compliant device has 192
KB L1 and 32 MB L2. The PD compliant device has almost triple the
floor planned SRAM area (151 MB vs 52 MB of on chip SRAM). If
all are turned on, these caches increases static and dynamic power
which increase operating costs.

Figure 8 shows the latency-die cost product (lower is better for
both parameters) for the design space exploration from Figure 7. The
October 2023 specifications prevent themost prefill latency-cost effi-
cient 4800 TPP designs from being exported. Furthermore, the 2400
TPP designs are again significantly impacted by performance den-
sity requirements. GPT-3’s PD-compliant, minimum latency-cost
designs have 2.72x and 2.64x higher prefill and decoding latency-
cost product respectively compared non-compliant designs. For
Llama 3, compliant designs have 2.58x and 2.91x higher prefill and
decoding latency-cost products respectively.

In summary, this section has the following takeaways:

• ACRs are effective at preventing prefill latency improve-
ments but still allow decoding improvements.

• The reticle limit prevents many single die compliant designs
from begin manufactured.
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Figure 8: TTFT and TBT Latency-Cost Product For 1600, 2400, and 4800 TPP Devices Design Space Exploration. Lower is better. White markers
indicate devices that violate PD limits or the 860mm2 reticle limit. Green triangle denotes modeled A100.

• The performance density requirement does not correlate
well with performance and increases costs.

5 Efficient Architecture-First Policy
This section overviews how current advanced computing rule spec-
ifications increased negative economic externalities. Currently, ad-
vanced computing sanctions may be reactively designed, where
policy makers and manufacturers are caught in a “cat-and-mouse”
game between updating regulations and improving performance.
We show how an architecture-first approach guides designers to-
wards domain-tailored hardware which promotes efficient policy
and reduces deadweight loss.

5.1 Existing Policy’s Negative Externality
The October 2023 updates introduced separate classifications for
data center and non-data center devices and NAC license excep-
tions for qualifying devices. One of the stated goals of the advanced
computing rules is to prevent sanctioned entities from receiving AI
focused hardware [62]. Although broadly defined, existing ACRs
are effective, since they can identify flagship GPU devices used for
bleeding-edge AI applications such as LLMs. However, these speci-
fications also restrict devices not designed for AI such as top-of-
the-line gaming GPU devices. This is a negative externality because
this policy scoped for preventing AI applications has (potentially)
inadvertently also prevented gaming applications. Furthermore,
currently ACRs are not economical, as creating compliant devices
requires additional costs compared to some sanctioned devices as
discussed in Section 4.4. By understanding these externalities, poli-
cies can be scoped to only apply to relevant devices while being
intuitive and economical for device manufacturers to follow.

5.2 Marketing-Based Classification
The October 2023 specifications apply different regulations for
data center devices. A downside of this classification is that the
difference between a data center and non-data center device is
based on marketing, and a single die architecture may be used
in both data center and non-data center marketed devices. Under
October 2023 specifications, some regulated data center devices
can avoid regulations if they were rebranded as consumer devices.
Similarly, some non-data center devices would be restricted if they
were evaluated under the stricter data center device guidelines.

14000
15600
17200
18800
20400

0 2 4 6 8 10
0

800

1600

2400

3200

4000

4800

5600

6400

18 20
Performance Density (TPP/mm2)

To
ta

l P
ro

ce
ss

in
g 

Pe
rfo

rm
an

ce
(Te

ra
Op

s/
Se

c 
* B

itw
id

th
)

Consist. DC
False DC
Consist. NDC
False NDC

Figure 9: October 2023 Marketing-Based Device Scatter Plot. “False”
devices have differing regulations if they were rebranded as the
opposite market segment. Data from [40, 41, 67, 75].
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ory Bandwidth. Architecture-based classification has no false non-
data center and only two false data center devices. Data from [40, 41,
67, 75].

To investigate, we calculated TPP and PD for 65 GPUs released
by AMD and NVIDIA between 2018 and 2024; 14 devices are mar-
keted as data center devices, and 51 are marketed as consumer
or workstation devices. We classified each device based on data
center and non-data center specifications. A device is considered
consistently classified if it is unregulated or regulated for both spec-
ifications. We classify a device as a “false data center” device if a
data center marketed device is currently regulated, but would not
be regulated if it was marketed as a consumer device. Similarly, a
“false non-data center” device is a non-data center marketed device
which is currently not regulated, but would be regulated if it was
marketed as a data center device. These classifications are plotted in
Figure 9. Existing specifications result in 4 false data center devices
and 7 false non-data center devices.

Flagship gaming GPUs such as the NVIDIA RTX 4080 and AMD
RX 7900 XTX would be regulated if they were marketed as data
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center devices. Furthermore, Low TPP data center devices such
as the NVIDIA L40 and A40 would not be restricted if they were
instead marketed as workstation devices. These results demonstrate
the flaws of using only marketing-based differentiation; existing
policies incentivize manufacturers to market powerful consumer
devices to face fewer restrictions. This also introduces inefficiencies
for data center operators, as some manufacturers prevent deploying
consumer devices within data centers [51].

We can address these discrepancies by applying the same regula-
tions across all devices and leverage architectural metrics to create
the desired classification. Data center GPUs have different target
users, workloads, and operating environments compared to con-
sumer devices, so their architectures generally have higher memory
capacity and higher memory bandwidth. We can differentiate cur-
rent data center devices by identifying devices with more than 32
GB memory or more than 1600 GB/s memory bandwidth, which
is show in Figure 10. This classification results in no false non-
data center and only two false data center devices. The two false
data center devices, the NVIDIA L2 and L4 GPUs, are based on the
AD104 die which is also used in high end gaming GPUs [70]. Using
architectural metrics for hardware policy reduces inconsistencies
from marketing-based differentiation, and provides clear guidelines
for manufacturers on how to scope potential future architectures if
they need to comply with said policies.

5.3 Architecture-First Performance Indicators
As shown in Section 4, current ACRs still permit a broad range of
architectural configurations with varying performance. Figure 11
shows the TTFT and TBT distributions for all 4800 TPP configura-
tions with die area’s within the reticle limit from Figure 7. The first
column shows all 4800 TPP configurations and following columns
show distributions with a single fixed architectural parameter.

Even for the two stages of transformer inference, the fixed ar-
chitecture distributions vary. Compute bound TTFT performance
benefits from having more L1 cache per systolic array. Designs
which only have 1 lane per core (Figures 11a, 11c column 2) have 5x
and 3.3x narrower distributions respectively for GPT-3 and Llama 3
compared to TPP alone. As previously discussed, TBT performance
is significantly affected by memory bandwidth - designs with fixed
2.8 TB/s memory bandwidth (Figures 11b, 11d column 5) have a
20.6x (GPT-3) and 10.7x (Llama 3) narrower distribution.

The October 2022 ACR had a minimum device bandwidth re-
striction, but device bandwidth does not correspond well with LLM
inference performance - configurations with fixed 500 GB/s device
bandwidth have only 5.7% (GPT-3), 15.2% (Llama 3) smaller TTFT
distributions compared to limiting TPP alone, as well as negligi-
ble effects on TBT distributions. Narrow distributions indicate
strong performance correlation which can be used to effi-
ciently target workloads-of-interest.

We now demonstrate how architectural parameters can be used
to improve computing policy. Regulators have been interested in
limiting device performance, so we perform another design space
exploration where architectural parameters are decreased com-
pared to a modeled NVIDIA A100. We again set TPP to 4800 and
filter out designs with die areas greater than the reticle limit. The

Table 5: Design Space Exploration Parameters For Figure 12.
Bold parameters are same as A100 [53].

Parameter DSE
Systolic Array Dim. 4x4, 8x8, 16x16
Lanes per Core 1, 2, 4, 8

Private L1 Cache (KB) 32, 64, 128, 192
Shared L2 Cache (MB) 8, 16, 32, 40
HBM Bandwidth (TB/s) 0.8, 1.2, 1.6, 2
Device Bandwidth (GB/s) 400, 500, 600

parameters are shown in Table 5, resulting in 2304 configurations
and performance distributions are shown in Figure 12.

When targeting TTFT performance, restricting L1 cache size has
the slowest median TTFT and narrowest performance distribution.
Small L1 caches slow down data provisioning to the systolic arrays
and become the major performance bottleneck. Devices with 32
KB L1 caches have a median TTFT 58.7% (GPT3), 52.6% (Llama 3)
slower compared to a modeled A100. 32 KB L1 cache devices have
1.59x (GPT-3), 1.43x (Llama 3) narrower distribution respectively
compared to restricting TPP alone. Limiting memory bandwidth
significantly increases TBT latency. Devices with 800 GB/s memory
bandwidth have median TBT 110% (GPT-3), 58.7% (Llama 3) slower
compared to a modeled A100 and have 41.8x (GPT-3), 42.4x (Llama
3) narrower distributions.

Architecture-first constraints can directly target the workload’s
unique bottlenecks and serve as better performance indicators for
modern workloads compared to using theoretical performance
alone. The narrower performance distributions provides better con-
trol over expected performance for future chip architectures and
policy. Further, they allow finer-grain disambiguation of a single
workload: future policy can target TTFT and TBT performance
separately using this architecture-first approach. TTFT or TBT per-
formance can be limited by reducing L1 cache size or memory band-
width respectively, and limiting these parameters independently
will permit designs that do not affect the other stage’s performance.

5.4 Externality-Aware Policy
Using architectural performance indicators allows device designers
and regulators to work together and craft efficient policies. From
our results and existing literature, we show how architecture-first
policies can achieve their goals while minimizing negative exter-
nalities as well as potential trade-offs. As a case study, we show
how policy can be scoped to restrict device architectures which
excel in AI applications but allows architectures which explicitly
achieve high gaming performance. Following existing regulations,
we suggest architectural parameters that are commonly disclosed
on device datasheets and white papers.

Matrix Multiplication Performance: Matmul hardware such
as systolic arrays are crucial for achieving high performance matrix
multiply operations used in machine learning applications. How-
ever, gaming applications rely on the GPU’s SIMT architecture,
texture units, and ray tracing cores to speed up graphics rendering.
Modern consumer GPUs (such as the NVIDIA RTX 4090) have sys-
tolic arrays to provide versatility, but this has caused these devices
to be restricted under current guidelines. If policies were scoped to
restrict device matmul performance (e.g. limit tensor TFLOPs for
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Figure 11: TTFT and TBT Latency Distributions for 4800 TPP From Fig. 7 DSE Grouped by Select Architectural Parameters. The first column
includes all configurations and following columns show distributions with a single fixed architectural parameter.
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Figure 12: TTFT and TBT Latency Distributions for Table 5 DSE Grouped by Select Architectural Parameters. The first column includes all
configurations and following columns show distributions with a single fixed architectural parameter.

NVIDIA devices or remove systolic arrays entirely), gaming-focused
architectures would be encouraged to be redesigned without mat-
mul accelerators which would hamper their AI performance but
would likely maintain high gaming performance [55].

Systolic arrays have been used in graphics upscaling technolo-
gies such as NVIDIA’s DLSS [20]. However, other compatible up-
scaling technologies are available which can run on GPUs which
do not have systolic arrays [6]. If systolic arrays are necessary for
gaming focused designs, policies may regulate the array’s dimen-
sions, as smaller systolic arrays perform worse in LLM inference
applications [82].

On-Chip SRAMMemory Sizing: We previously showed how L1
cache sizing has the most direct impact on limiting LLM inference
TTFT performance, but gaming applications are also sensitive to
cache sizing to mitigate irregular memory accesses and latency [42].
Additionally, there needs to be nuance on how SRAM-related spec-
ifications are crafted as manufacturers vary on how they classify
on-chip SRAM. Google TPU’s common memory acts as a global
L2 between the systolic arrays [33] and NVIDIA’s Shared Memory
combines private, per-SM scratchpads with L1 cache [53].

Nonetheless, cache configurations are a promising architectural
performance indicator, and cache sizing based policy can still be im-
plemented to differentiate between data center and non-data center
devices as they already have different cache hierarchies. NVIDIA’s
Hopper data center architecture has 256 KB of L1 cache/shared
memory per SM while their Ada Lovelace consumer architecture
has 128 KB per SM [54, 55]. Similarly, AMD CDNA3 data center

architecture has 64 KB instruction caches compared to RDNA3
consumer architecture’s 32 KB [7].

Memory Configuration: LLM inference decoding is severely
memory bandwidth bound and the overall arithmetic intensity is
low, so limiting memory bandwidth will significantly reduce AI
performance. Gaming applications such as graphics rendering and
raytracing on the other hand need to access texture and graphics
data stored at different locations in the memory. These irregular
accesses are usually latency bound and memory bandwidth utiliza-
tion is low [76]. Therefore, targeting memory bandwidth becomes
the attractive choice to create policies for limiting AI performance.
Additionally, data center and consumer GPU devices already have
different memory bandwidth configurations - generally data cen-
ter GPUs use high bandwidth memory while consumer GPUs use
lower latency GDDR memory. Limiting device memory capacity
reduces the number of model parameters, which correlates with the
accuracy and capabilities of models [10]. However, smaller models
are able to achieve high accuracy and similar human preferences
compared to large models on certain tasks [21].

By scoping regulations to create designs which are inherently
limited for AI applications, tailored gaming-focused devices can
continue to be sold and reduce overall negative externalities.

6 Related Work
6.1 Computing Sanctions Design
In the United States, computing related sanctions and export con-
trols are administered by the Bureau of Industry and Security (BIS)
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under the Department of Commerce. New export controls are im-
plemented via a general federal level rulemaking process [58]. As
these regulations are designed, the BIS will solicit guidance from
other government departments as well as external stakeholders
who may be affected by these regulations. Before regulations are
finalized, the BIS will either release a proposed rule or interim final
rule which the general public can comment on.

Numerous performance metrics have been previously used to
classify computing for export controls. Composite Theoretical Per-
formance (CTP), introduced in 1991, is based on 64 bit FLOPs/sec
and includes adjustments for fixed point operations, operation
bitwidth scaling, and memory/IO configurations [8]. CTP was re-
placed in 2006 with Adjusted Peak Performance (APP), which fo-
cused on 64 bit FLOPs/sec and weighted vector and non-vector
operations differently [73]. APP was later replaced with only theo-
retical FLOPs/sec [12], and bitwidth scaling was reintroduced with
TPP. Performance density has been used in the context of multi-
core processors but was designed as an optimization metric using
workload performance rather than for device classification using
theoretical performance [43].

This work provides a computer architect’s perspective on how
to optimize designs under existing computing export controls. We
demonstrates how combining theoretical based computing classifi-
cation metrics with informed architectural parameters is more in-
dicative of workload performance. Furthermore, this work proposes
economically efficient policies to reduce the negative externality of
such regulations which previous works do not mention.

6.2 LLM Inference Hardware
Most previous works regarding improving LLM inference perfor-
mance have focused on system-level optimizations, including kernel
fusion [23], scheduling [4, 59, 80], and parallelism [64]. On the ar-
chitecture side, LLMCompass covered the compute-bound nature of
prefill andmemory bandwidth-bound nature of decoding stages and
proposed separate throughput and latency oriented designs [82].
This work specifically focuses on the hardware parameters that
are affected by current ACRs and shows how these regulations
ultimately affect LLM inference performance.

6.3 Domain-Tailored Performance Optimization
In 2021, NVIDIA introduced “Lite Hash Rate" (LHR) gaming GPU de-
signs which hadmodified firmware to limited the device’s Ethereum
hash rate without affecting gaming performance [77]. Additionally,
NVIDIA introduced CMP Hx line of dedicated to cryptocurrency
mining [78]. CMP Hx devices use the same dies as data center and
gaming GPUs, but removed display outputs and optimized device
voltage and frequency [68, 69].

This work’s architecture-first approach for workload specific
optimization would encourage creating distinct hardware designs
for each workload. However, this does not prevent two different
designs from using the same die, as binning dies based on defect
locations (e.g. cores vs memory PHYs) or purposeful disabling can
lead to the same effect. Furthermore, firmware based solutions have
seen workarounds to unlock additional performance [74] which
architecture-first approaches are less vulnerable to.

7 Conclusion
In conclusion, this work makes the first study on the chip architec-
tural and economic externality implications of the advance com-
puting rules. We demonstrate how the ACR specifications affect
chip architecture parameters - TPP essentially limits tensor/matrix
core performance and performance density enforces a minimum
die area. We conduct a thorough design space exploration of chip
architectures for LLM inference under October 2022 and October
2023 ACRs, present quantified performance, die area, and cost trade-
offs of current sanctions, and show how chip architectures can be
optimized under these regulations. Under October 2022 specifica-
tions, single die designs can still improve TTFT and TBT by 4% and
27% respectively compared to a modeled NVIDIA A100.

From our study, we demonstrate how future policies can be de-
fined to reduce negative externalities. Replacing marketing-based de-
vice classification with architectural metrics reduces the ambiguity
of existing regulations. Combining theoretical performance metrics
with select architectural parameters creates better performance in-
dicators. Using TPP and memory bandwidth limits together creates
devices with up to 110% slower median TBT latency and up to 42.4x
narrower distribution compared to using TPP alone. By guiding
regulations towards designs which are inherently limited in perfor-
mance for workloads-of-interests, manufacturers can continue to
improve and sell devices which reduces negative externalities and
market distortions.

Current and future events will provide ripe opportunities for
computer architects to shape policies - let us leverage our experi-
ences to ensure they are fair, effective, and impactful.
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