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Abstract—In the field of computational science, effectively
supporting researchers necessitates a deep understanding of how
they utilize computational resources. Building upon a decade-old
survey that explored the practices and challenges of research
computation, this study aims to bridge the understanding gap
between providers of computational resources and researchers
who rely on them. This study revisits key survey questions and
gathers feedback on open-ended topics from over a hundred
interviews. Quantitative analyses of present and past results
illuminate the landscape of research computation. Qualitative
analyses, including careful use of large language models, highlight
trends and challenges with concrete evidence. Given the rapid
evolution of computational science, this paper offers a toolkit
with methodologies and insights to simplify future research and
ensure ongoing examination of the landscape. This study, with
its findings and toolkit, guides enhancements to computational
systems, deepens understanding of user needs, and streamlines
reassessment of the computational landscape.

I. INTRODUCTION

Computation has become increasingly essential in various
research disciplines. It enables researchers to simulate com-
plex phenomena, analyze datasets, and develop new theories.
However, the true potential of computational research can
only be harnessed through a seamless collaboration between
researchers and the providers of computational resources. This
symbiosis requires not only the continuous advancement of
computational technologies but also a deep, nuanced under-
standing of the researchers’ evolving needs and challenges. A
survey of scientists from various disciplines who use compu-
tation in their research was conducted in 2011 at a doctoral-
granting institution [1]. The survey provides insights into sci-
entists’ needs, beliefs, and challenges regarding computation
and highlights the importance of expanding computational
accessibility in research. It has been more than a decade since
its publication, and there have been significant improvements
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in computing hardware and software. This study aims to re-
examine the state of computation in research, offering fresh
insights into the current state of computational science and
laying the groundwork for future enhancements in research
support systems.

The study starts with a survey targeting researchers from the
same institution as in the previous study, Princeton University.
The survey participants are drawn from two sources: randomly
sampled researchers and top computation users. The interviews
were conducted via online or in-person meetings, featuring
diverse open-ended and multiple-choice questions on topics
such as research projects, computation experience, and desired
improvements. The results are compared to the previous study
to highlight trends that have surfaced over the past years.

The survey results uncover three categories of computational
analysis. First, it reveals the computation landscape at the
target institution including computation usage by disciplines,
computation hardware, and common software stack including
a list of computation-intensive software and their typical
running time and environment. These results help us focus
on the important research needs and the typical use patterns.
Second, the study investigates the computation usage experi-
ence of the researchers, such as the programming language
choices and trends, time spent on programming, debugging,
and actively waiting for runs. These results help us understand
the researchers’ interaction with the computation. Finally, to
understand the needs of researchers more directly, this study
explores how hypothetical improvements in computational
power could impact their research, along with their desired
enhancements to their development environment or broader
support from the computer science community.

Upon examining our findings, it becomes evident that,
while computational resources and practices have evolved
significantly, there remains a substantial gap between available
technologies and their effective utilization by researchers. With
an analysis framework that includes careful usage of large
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language models, we identified four major trends and five chal-
lenges. The trends include more time spent in programming,
more diverse needs for computation, programming language
shift, and increased machine learning usage. The challenges
include making performance more accessible, making develop-
ment tools more user-friendly, managing duplicated and legacy
projects, supporting fast-evolving machine learning applica-
tions, and providing adequate and diverse training. Focusing
on these challenges can help us unlock the full potential of
computational research across disciplines, ultimately fostering
innovation and expanding the boundaries of scientific inquiry.

During the study, we went through many hurdles from initi-
ating and conducting the surveys to data collection and analy-
sis and realized that documenting and sharing the methodology
of the survey itself can be useful. In this paper, we present
a “toolkit” designed to assist researchers in navigating the
complexities throughout the process of a survey study like this.
It provides guidelines for survey execution and our reflective
insights. It offers a strategic framework for researchers to
conduct future surveys that can extend to multiple institutions
and compare them with past studies as this paper does.

The contributions of this paper are:
• Conducting a comprehensive survey on researchers’ en-

gagement with computation, encompassing 106 inter-
views;

• Presenting the results and analyses, including identified
trends and challenges;

• Reflecting on the survey study process and providing a
“toolkit” for conducting similar research in the future.

II. BACKGROUND

The landscape of computational science is shaped by rapid
technological advancements and the evolving needs of the
research community. A decade ago, a survey provided a snap-
shot of this dynamic field, capturing the practices, preferences,
and challenges faced by computational users. While this prior
study offers a baseline, recent developments necessitate a
revisiting of the landscape of computation for research.

A. Prior Study

The present study builds upon a survey conducted more
than a decade ago that focused on very similar questions
regarding the practice of computational science. It was carried
out at the same doctoral-granting research institution that we
investigated for this survey, Princeton University [1]. The
prior study aimed to understand how scientists coped with the
growing computing demands and to uncover prevalent pro-
gramming practices, the importance of computational power,
performance-enhancing strategies, and the computational en-
vironment within the institution. The survey included 58
randomly selected researchers from diverse fields, including
natural sciences, engineering, interdisciplinary sciences, and
social sciences. Participants were interviewed and asked about
various aspects of scientific computing related to their re-
search.

The results of the prior study revealed that programming
systems and tools available at the time did not fully meet the
needs of computational scientists. Researchers were found to
invest significant time and effort in programming, and while
they understood the importance of scientific computing, they
were generally unsatisfied with the execution time of their
programs. It was identified that improvements in performance
would not only enhance the accuracy and scale of experiments
but also enable fundamentally new research avenues. Several
areas of improvement were identified in the study, including
the need for non-numerical algorithms, better utilization of
computational resources, and shared-memory parallelization
techniques. Additionally, the study found that scientists often
did not leverage performance analysis tools to identify and
address performance bottlenecks in their code [1].

By revisiting the key questions from the prior research
and expanding to unexplored areas, the current study aims to
provide insights into the evolution of computational practices,
identify emerging trends, and underscore potential areas for
future advancements in computational science.

B. Recent Context

Since the publication of the previous study in 2011, the field
of computational science has seen significant developments.
There has been a notable increase in the adoption of cloud
computing and high-performance computing (HPC) clusters
by scientific communities. Studies have shown that cloud com-
puting can provide significant benefits in terms of scalability,
flexibility, and cost-effectiveness for scientific applications [2].
In addition, HPC clusters have become more accessible to
scientists due to advances in cluster management tools and
increased availability of resources [3]. Recent work introduces
the Research Computing and Data Capabilities Model to
evaluate the availability of research computing resources. A
community report on this is released annually [4]. With many
universities participating in this effort, there are abundant
data on how the computation resources are provided to the
researchers.

Despite these developments, there is still a gap between the
needs of scientific researchers and the tools and technologies
available to them. It is necessary to understand how researchers
interact with computation and their specific needs, a goal this
study aims to address.

The advent of Large Language Models (LLMs) has sig-
nificantly streamlined survey and interview-based research,
enabling small teams to efficiently analyze vast transcript
datasets. These models excel at deep text comprehension,
allowing for the swift identification of themes and insights.
This significantly reduces the time and resources previously
required for such analyses. These advancements not only speed
up qualitative analysis but also expand research possibilities
by accommodating larger sample sizes and more complex
questions, enabling more comprehensive studies (such as this
current one).



III. SURVEY METHODOLOGY

This section outlines the methodology employed in the
design and execution of the survey. The survey methodology
involved a combination of open-ended and multiple-choice
questions, aiming to delve into researchers’ computational
environments, their programming preferences, and the impact
of computational capabilities on their work. It details the
structured approach taken to select participants, categorizing
them into two distinct groups to capture a broad spectrum of
computational practices.

A. Survey Questions

The survey questionnaire was designed to cover three
main categories including computational backgrounds, current
research projects, and researchers’ needs and expectations.
The design of the survey questionnaire was informed by a
multifaceted approach, integrating questions from previous
studies to ensure continuity in tracking the evolution of
computational practices, alongside new inquiries aimed at
clarifying emerging trends and addressing gaps identified in
earlier research. A detailed breakdown of the survey questions
is presented in Table I.

TABLE I: Summary of survey questions

Questions Topic

1.1-1.2 Demographic information and research goals

2.1-2.11 Programming background and preferences

3.1-3.14 Description of research project and its software stack

4.1-4.13 Computation performance and use of parallelism

5.1-5.7 Programming expertise, IDE usage, and debugging
techniques

6.1-6.3 Use of machine learning in research projects

7.1-7.6 Impact of computation speedup, learning time, pre-
ferred languages, desired features, and feedback

B. Candidate Selection

This survey was conducted with two groups of participants,
each selected for a different purpose.

a) Group 1: Randomly selected from the institution:
To select participants for Group 1, we compiled a list of
graduate students across all departments. A subsequent strat-
ified random sampling approach was used to ensure that the
sample was representative of the student population across
departments. To contact the participants, we employed a
multi-pronged approach. We started with cold emails, asking
subjects to agree to an interview, and then followed up on
non-responsive subjects multiple times. Overall, the sampling
approach and outreach methods employed aimed to minimize
bias and ensure a representative sample of graduate researchers
at the institution.

b) Group 2: Top-computation users from the institution:
To select participants from Group 2, we obtained a list of the
most frequent computer cluster users from the administrators
of the institution’s cluster computers. We then contacted these
individuals through cold emails and through personal contacts,
inviting them to participate in an interview. Including this
group aimed to gain insights from individuals who were
particularly experienced with computational resources and
could provide a unique perspective on the use of computation
in academic research.

The breakdown of interviewees by department is listed in
Table II. Overall, the candidate selection and outreach methods
employed aimed to ensure a representative sample of graduate
students and experienced computational researchers.

TABLE II: Subject Population Distribution (G1: “Group 1:
Randomly selected ”, G2: “Group 2: Top-computation users”)

Field Topic Count
G1 G2 All

Engineering Chemical & Biological 2 5 7
Civil & Environmental 3 1 4
Computer Science 5 3 8
Electrical & Computer 8 2 10
Mechanical & Aerospace 0 7 7
Operations Research & Financial 4 1 5

Natural Atmospheric & Oceanic 1 5 6
Sciences Astrophysics 2 4 6

Chemistry 6 6 12
Ecology & Evolutionary Biology 1 2 3
Geosciences 1 3 4
Mathematics 2 0 2
Molecular Biology 0 1 1
Neuroscience 1 0 1
Plasma Physics Lab 2 6 8
Physics 0 2 2
Quantitative Biology 2 0 2

Social Economics 6 0 6
Studies & Public & International Affairs 4 0 4
Humanities Other Social Studies 4 0 4

Other Humanities 4 0 4

Total 58 48 106

C. Data Collection

Interviews were conducted via virtual meetings or in-person
sessions. Each interview lasted between ten minutes to one
hour, depending on how many questions were relevant to
the interviewee. Interviewers recorded the meetings while
asking the survey questions. Research assistants then reviewed
the interview recordings and manually completed a format-
ted questionnaire. The questionnaire aimed to elicit usable,
concise, and comparable data. The survey adhered to the
data security guidelines of the Institutional Review Board
(IRB). To ensure consistency in the data collected, interviewers
were trained on how to conduct the interviews, and research
assistants were instructed on how to record responses.

D. Data Analysis

The data analysis was conducted in two main phases. The
first phase focused on quantitative analysis, where data from



multiple-choice questions were plotted and compared with
results from the previous study. This comparison allowed us to
quantify changes in computational science practices over the
past decade, such as shifts in programming language usage,
attitudes toward performance optimization, and computational
resource utilization. The second phase was qualitative, us-
ing an analysis framework (detailed in Section VII-A) to
extract actionable insights. This dual approach, combining
quantitative and qualitative methods, enabled a comprehensive
synthesis of our findings.

E. Survey Timeframe

Interviews were primarily conducted from late 2022 to early
2023. Analysis took place from early 2023 to early 2024. Most
of the quantitative insights were aggregated and analyzed in
early 2023, while qualitative analysis continued until early
2024.

IV. RESEARCH COMPUTING LANDSCAPE

The first part of the results focuses on the landscape of
research computing including the percentage of researchers
who use computation in their research, referred to as the
“computation usage rate.” It also explores their hardware and
software choices.

A. Computation Usage Rate

To show the extent of computational usage across disci-
plines, we analyzed randomly sampled candidates, grouped
departments into three broad categories, and determined the
proportion of respondents who utilized computation in their
research. Not surprisingly, the usage of computation is high
across disciplines. Overall, 75% of all researchers use compu-
tation in their research. In natural sciences and engineering,
almost all researchers use computation methods (98% and
96%, respectively). In social studies and humanities, 42% use
computation regularly in their research.

B. Computation Hardware Choices

The percentage of scientists using different computing hard-
ware compared to the prior study is presented in Figure 1.
As the results indicate, fewer researchers run their code on
desktops now, shifting to running code on servers or clusters.
GPUs are becoming an emerging platform for computing. A
third of all researchers we interviewed are using GPUs to
speed up computation. Some researchers are also looking into
FPGA as an alternative approach.

C. Research Software Stack

Researchers employ a diverse array of applications, soft-
ware, and libraries to support their work across various fields.
Among these tools, simulation software such as Athena++ [5],
LAMMPS [10], and COMSOL [25] plays a significant role,
as it helps model complex physical systems. Optimization
tools like Gurobi [21] and Mosek [22] and solvers such as
Z3 [26] and Sundials [27], [28] are also crucial in han-
dling computationally intensive tasks. Verification software,
including Seahorn [29] and NV [30], is used to reason about
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Fig. 1: The percentage of different computing hardware used
by scientists, current study (Now) vs previous study (Past).

correctness properties of programs and network protocols. In
the realm of machine learning, frameworks like PyTorch [23],
TensorFlow [24], and Transformers [31] have gained popu-
larity, while OpenVino [32] serves as an efficient inference
toolkit. Libraries such as FFTW [33] and LAPACK [34] fa-
cilitate numerical computations. Some numerical computation
libraries like PETSc [35] are more specialized to certain areas.
HDF5 [36] and Blosc [37] that handle file I/O and compression
tasks are also widely used to improve performance. For
data analysis, researchers rely on packages like FastQC [38],
SAMtools [39], and various R and Python packages like
EdgeR [40]–[42], WGCNA [43], [44], and pandas [45]. Image
processing and computer vision tools, such as ImageJ [46],
mica [47], and OpenCV [48], also play a key role in various
research areas.

Table III focuses on computation-intensive applications uti-
lized by the top computational users, as identified in the
survey. These diverse applications focus on simulation, op-
timization, and machine learning.

V. COMPUTATION USAGE EXPERIENCE

This section focuses on the researchers’ experience with
different steps of using computation, from programming to
debugging and optimizations.

A. Programming Language Choice

By examining the data from both randomly sampled re-
searchers, the top computation users, and from the prior study,
we can identify key trends and their potential implications
for the future of computational research. Table IV offers a
breakdown of language usage.

Python has emerged as the dominant programming lan-
guage, experiencing a rapid increase in adoption across re-
search disciplines, departments, and experience levels. This
surge in popularity can be attributed to Python’s versatil-
ity, ease of use, and rich ecosystem of libraries and tools,
making it an attractive choice for researchers from various
fields. C/C++, Fortran, and MATLAB, once popular choices
among researchers, have experienced a significant decline in
usage in contrast to the growing popularity of Python and
R. The results also show that Fortran and C/C++ maintain a



TABLE III: Computation-intensive applications

Application Type Field Open Source Typical Runtime Execution Environment

Athena++ [5] Simulation Astrophysics Y 1 week - 1 month PC, Cluster, Supercomputer

REBOUND [6] Simulation Astrophysics Y Hours - days Cluster

GFDL Models [7] Simulation Climate Y 1 month Cluster, Supercomputer

Parflow [8] Simulation Hydrology Y Hours PC, Supercomputer

Specfem3D globe [9] Simulation Seismology Y Hours - weeks Group Server, Cluster

LAMMPS [10] Simulation Molecular Dynamics Y 1 day - months PC, Cluster

MEEP [11] Simulation Electromagnetics Y 1 month Cluster

hfss [12] Simulation Electromagnetics N Hours - days PC, Personal Server, Cluster

ORCA [13] Simulation Quantum Chemistry N 1 month PC, Cluster

GAMESS [14] Simulation Quantum Chemistry Upon request Hours - 1 week PC, Cluster

DMOL3 [15] Simulation Quantum Chemistry N Weeks - 2.5 months PC, Cluster

ONETEP [16] Simulation Quantum Chemistry N Weeks - 2.5 months PC, Cluster

VASP [17] Simulation Quantum Chemistry N Weeks - 2.5 months PC, Cluster

Tristan v2 [18] Simulation Plasma Physics Y 1 day Cluster

ISAT [19] Simulation Combustion Y Several days Cluster

NGA [20] Simulation Computational Fluid Dynamics Upon request Several days Cluster

Gurobi [21] Optimization Operations Research N Hours PC, Cluster

MOSEK [22] Optimization Operations Research N Hours Cluster

PyTorch [23] Machine Learning Multiple Fields Y Hours to weeks Cluster

TensorFlow [24] Machine Learning Multiple Fields Y Hours to weeks Cluster

TABLE IV: Programming Language Usage Breakdown

Language Randomly Top Computation Prior
Sampled Users Study

Python 69% 83% 26%

R 40% 29% 15%

MATLAB 24% 15% 54%

C/C++ 15% 46% 56%

Fortran 4% 27% 27%

Others 35% 21% 20%

strong presence among top computational users, despite For-
tran’s near abandonment and C/C++’s sharp decrease among
randomly sampled researchers. A similar proportion of top
computational users code in C/C++ and Fortran as a decade
ago.

B. Time Spent on Programming and Debugging

Figure 2a shows, unsurprisingly, that programming has
taken up an even larger portion of research time overall,
compared to the past survey responses, where researchers had
already been spending about 35% of their time programming
on average. Data on the percentage of time spent in program-
ming is more concentrated than before. Figure 2b suggests
that respondents are generally spending a larger portion of
time debugging than before. We take a closer look at how
researchers debug in Section V-D.
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Fig. 2: Time spent on programming and debugging.

C. Research Time Actively Waiting for Runs

We categorize research time spent actively waiting for
runs when the computation tasks are on the critical path of
the research. The survey found that this waiting time varied
considerably among participants, as shown in Figure 3. While
about 40% of respondents indicated that less than 5% of their
research time was spent waiting for runs, more than 25% of
scientists reported spending more than 20% of their research
time waiting. We cannot perform a direct comparison with the
previous survey data because the question was formulated in
a different way, yet we can still conclude that waiting time
remains a problem for many scientists. Only about half of the
interviewees optimize performance of their code even though



active waiting has taken up more than 10% of their research
time and the benefits from optimizing might be non-trivial.
A closer look into the optimization techniques is available in
Section V-E.
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Fig. 3: Research time actively waiting for runs, with the
breakdown of whether optimizing for performance.

53 interviewees discussed their understanding of why their
computation is blocked. 36 interviewees (68%) attribute the
cause to computation speed; 21 (40%) to memory, either
memory IO or space; 3 (6%) to storage, either lack of storage
space or IO; 4 (8%) to the lack of resources on the cluster;
and 1 (2%) to other issues, in this case, lack of license.

D. Debugging Methods

Debugging is an essential process in software development
that involves identifying and fixing errors in the code. Out
of 46 respondents who described their debugging methods,
the most popular technique was using printing statement
(50%), where developers display variables’ values and track
the program’s states. Breakpoints (35%) came in second,
allowing developers to pause code execution at specific points
for examination. Code inspection (26%) was the third most
popular method, which involves manually reviewing the code
to identify bugs. Debugger tools (15%) ranked fourth and are
used to step through the code, inspect variables, and monitor
execution. Lastly, Other techniques (11%) included unit tests
or asking other people for help. Compared to the last survey,
the use of debugger tools has dropped significantly, while
printing and code inspection has gained much popularity. This
shift could be attributed to the increased use of Python, a
dynamically-typed language, as opposed to other statically
compiled programming languages.

E. Optimizations

Our study revealed that 37% of respondents reported spend-
ing time optimizing their programs, which is less than the prior
study (52%). 26 interviewees shared the methods they use to
optimize their program. Out of the 26 respondents, algorithmic
changes were employed by 4 individuals (15%), while data
structure optimizations were used by 5 individuals (19%).
Specialized libraries were favored by another 4 participants
(15%), whereas loop optimizations had 7 participants (27%)
opting for the method. Compiler flags were employed by
2 participants (8%). Lastly, 7 individuals (27%) relied on

configuring their runs to optimize performance, such as the
number of nodes used when running one experiment. The
distribution is similar to the prior study.

F. Parallelism

In our study, 48% of the randomly sampled respondents
reported using some form of parallelism in their research,
and 92% of top computation respondents use parallelism. The
detailed comparison between these two categories and the
past interview is presented in Table V. This stark contrast in
parallelism usage between randomly-sampled respondents and
top computation users underscores the importance of parallel
computing in handling computationally intensive research.
The widespread adoption among high-end users highlights
parallelism’s significance in advancing research efficiency and
tackling complex computational challenges.

TABLE V: The comparison of the breakdown of parallelism
among the prior survey, the randomly-sampled candidates, and
the top-computation candidates of this survey.

Parallelism Random Top Computation Past

Job 28% 60% 51%

Message passing 10% 54% 21%

Threading 10% 48% 7%

GPU based parallelism 28% 42% 9%

Others 5% 6% 14%

None 52% 8% 31%

VI. PERFORMANCE SATISFACTION AND NEEDS

This section encapsulates direct feedback from researchers
on their satisfaction levels with current computational per-
formance and expressing their performance needs for future
research.

A. Performance Satisfaction

From the interviews, we found that 73% of researchers were
satisfied with the computational performance of their projects,
a great increase from the number of 29% in the past survey.

There are many possible explanations for the rise in overall
satisfaction with computing performance. It may be due to
researchers now having access to computing hardware and
software packages with significantly better performance, or
or to research and engineering staff who help streamline
the coding and experiment-running processes. Also, it might
be the case that researchers are now expecting long-running
experiments and plan their schedules and research around it,
though this might not be applicable to every researcher since
we have shown in Figure 3 that waiting for runs is still non-
negligible for many.

Among the researchers who faced computational challenges,
39% resorted to optimization efforts to accommodate compu-
tational constraints, 36% utilized resource augmentation, 22%
reached out to external support and collaborative resources,
and 31% made scope or methodology modification.



Our data also revealed that a minority of researchers, 15%,
confronted complete roadblocks in their computation, while
85% reported they did not experience such insurmountable
challenges in their work. The latter result could be due to
their access to better resources, alternative methodologies, or
the adaptability of their research objectives to computational
constraints.

TABLE VI: Percentage of researchers indicating the impact of
2x, 10x, and 100x computational speedups on their research.

Impact Random Candidates Top Computation

2x 10x 100x 2x 10x 100x

No 62% 36% 31% 38% 13% 8%

Minor 24% 40% 33% 52% 58% 38%

Major 0% 10% 22% 8% 27% 52%

Unknown 14% 14% 14% 2% 2% 2%

B. How much more performance is needed to make an impact?

The survey responses show that 26% of researchers now
believe their bigger research plans are unattainable due to the
lack of computing power compared to the number of about
70% in the past survey. To understand this deeper, we followed
up with a hypothetical question – how a 2x, 10x, or 100x
speedup could change their research. The breakdown of four
types of responses is presented in Table VI.
• No Impact: Some researchers are not sensitive to per-

formance speedup. They are currently not blocked by the
computation and do not consider additional computation as
a major factor in future research. Or the speedup is not
enough to change their research in any meaningful way.

• Minor Impact: Some researchers claim that the speedup
can improve their workflow but there is no major change in
the nature of the research. This might be due to the other
part of their research workflow, such as bench work, still
requiring a significant amount of research time.

• Major Impact: Some are blocked by computation, and
the speedup can change the nature of their research or
improve their research in a significant way that allows them
to explore more important questions.

• Unknown: Some are not sure about the impact of the
speedup. There might be changes but they cannot predict
how significant the impact would be.
The varied responses to potential computational speedups

highlight the diverse computational demands and adaptability
among researchers, with top computation users particularly
sensitive to the benefits of enhanced performance. This sen-
sitivity underscores a critical intersection where computa-
tional capability directly influences the scope and ambition
of research, enabling more complex inquiries and potentially
accelerating scientific discoveries. Furthermore, the distinction
between no, minor, and major impacts reflects the mul-
tifaceted nature of computational research, suggesting that
improvements in computational performance could catalyze a

paradigm shift in how research is conducted across various
disciplines, particularly for those currently constrained by
computational limitations.

VII. TRENDS AND CHALLENGES

The end goal of this research is to learn what the computa-
tion community should work on and how to better support re-
searchers utilizing computation. The proposed analysis frame-
work enables in-depth analysis, identifying significant trends
and challenges Unlike the results presented in the previous
sections, which focus on responses to single questions, these
analyses span across questions and often involve revisiting
transcripts to gain a deeper understanding of the interviewees.

A. The Analysis Framework

1) Data Perspectives: The Past, the Present, and the Future:
The survey, along with the prior study from a decade ago,
naturally provides us with three perspectives: the past, the
present, and the future.

• The Past: Historical Baseline. The foundation of our
analysis begins with an examination of the prior study,
which offers insight into the methodologies, tools, and
analytical approaches prevalent at that time.

• The Present: Contemporary Results. Our current results
are derived from survey data of current computational
researchers. This survey captures a snapshot of today’s
practices, tools, and challenges in the field.

• The Future: Needs and Desires. Our conversations with
the researchers unearth their aspirations, anticipated chal-
lenges, and the tools they wish to see developed.
a) The Past to the Present ⇒ Trends: Comparing the

present results with the historical baseline reveals trends over
time, such as shifts in preferred programming languages,
adoption of new computational technologies, and evolving
research methodologies.

b) The Present to the Future ⇒ Challenges (Opportu-
nities): Comparing the present results with the researchers’
needs reveals challenges or opportunities for improvements.
These challenges are critical for guiding the development of
supportive technologies and methodologies.

2) Technique: Learn from Individual Cases: With a lot
of data, there is a natural tendency to calculate numbers
to represent the general trends and challenges. While the
quantitative analysis is important, delving into individual cases
can be more helpful to have actionable insights. For example,
understanding why one researcher is not using GPU in their
research despite clearly expressing a need for additional per-
formance can help us find a better path forward. Understanding
both the quantitative trends and qualitative aspirations of
researchers enables stakeholders to better allocate resources,
develop supportive technologies, and foster an environment
conducive to future innovations.

3) Technique: Get Help from Large Language Models
(LLMs): We employed Large Language Models (LLMs) for
analysis on interview transcripts. GPT-4, developed by OpenAI
[49], and Claude, by Anthropic [50] were invoked through



their APIs, which guarantees that the data is not used for
training based on their privacy policies. Additionally, prior to
using any transcripts as input for LLMs, identifiers such as
names and emails were removed from the transcript. Figure 4
shows a simple demonstration on how LLMs can help. We ask
the LLMs to determine whether a user is “performance aware”,
based on mentioning of using high performance hardware like
GPUs or doing performance optimizations in their transcript.
There is no direct question like this in the survey questionnaire,
making the LLM’s ability to search for contextual hints
particularly useful. The classification from the LLMs is then
compared against “the percentage of research time waiting
for runs” which are extracted directly from existing structured
survey responses. Human researchers will dive deep into the
cases where users are spending significant time waiting for
runs but are not “performance aware” and understand the full
context.

Throughout the study, we did not use statistics based on
LLMs’ responses. Instead, we used LLMs to filter and high-
light responses that required further investigation, effectively
streamlining the process of identifying critical feedback.

Prompt: 
Based on this transcript,
is the user 'performance

aware?' <Detailed
description of

performance aware>

Raw
Survey

Transcript

LLM

Respondent
Research

Time Waiting
for Runs %

Performance
Aware

#1

#2
...

#42

...

15%

20%
...

35%

...

No

Yes
...
No

...

Researchers Insights

Fig. 4: LLM-driven classification process identifies users for
targeted review based on performance awareness and high wait
times

4) The Workflow: To identify trends, we compare the
present data with the past; for challenges, we compare the
present with the future. We examine correlated questions
within each time perspective—the past, the present, or the
future. We then compare multiple entries from either existing
structured results or results from LLMs, looking for responses
that warrant deeper investigation. These responses either show
practices and needs that conflict with each other or provide a
detailed account of a problem the researchers face. Actionable
insights are summarized from these responses.

B. Major Trends

a) More Time Spent In Programming: Researchers now
spend more of their research time programming, in which a
larger share of programming time is dedicated to debugging
(§V-B). While researchers are generally more satisfied with
the performance (§VI-A), the research time actively waiting
for runs is still significant (§V-C). These results confirm the
importance of programming and computational methods for
researchers, motivating further research into enhancing the
computational experience to support research endeavors.

b) More Diverse Needs for Computation: The needs
for computation have become more diverse in many aspects.
Computation is now used by researchers from all different
disciplines (§IV-A). Thus, these researchers have very differ-
ent backgrounds and different usage scenarios. In terms of
software applications, computation is widely used for simu-
lation, verification, machine learning tasks, and data analysis.
Different types of applications exhibit varying performance
patterns, including differences in hardware requirements and
typical runtime (§IV-C). From the hardware aspect, there is
increased usage of clusters, servers, and significantly more
reliance on GPUs” (§IV-B). Moreover, improved performance
has various impacts on researchers (§VI-B). All these imply
that there is no one-size-fits-all solution. We must consider the
specific needs of target users when developing new techniques
for computational researchers.

c) Programming Languages Shift: As discussed in Sec-
tion V-A, the increase in popularity of Python and R, especially
with their breadth of packages, has made computing more
accessible to more researchers. Meanwhile, other languages
including C/C++, Fortran, and MATLAB, have declined sig-
nificantly. However, for computation-intensive tasks, C/C++
and Fortran are still widely used, highlighting the importance
of offering support and resources for these specialized, high-
performance computing languages, even as more versatile
options like Python and R gain widespread adoption.

d) Increased Machine Learning Usage: Our survey re-
sults indicate that 30% of respondents are using machine
learning techniques in their research in various fields. Ma-
chine learning algorithms can uncover hidden patterns, make
predictions, and optimize complex systems, making them
invaluable assets in various research contexts. Many intervie-
wees expressed interest in incorporating machine learning into
their future research. Several researchers noted that machine
learning has fundamentally changed their research, citing
examples like AlphaFold, which drastically reduced the time
needed to predict protein structures. These findings emphasize
the importance of supporting machine learning education and
infrastructure to facilitate further innovation and adoption
across the research community.

C. Challenge: Making performance more accessible

Compared to a decade ago, there is no doubt that more
computing resources are available, both in computing clusters
and individual devices such as GPUs. However, effectively



harnessing these resources is a different challenge. Our find-
ings underscore a gap between the potential of these advanced
computing resources and the ability of researchers to fully
capitalize on them. This gap highlights the critical need to
make performance more accessible.

“We don’t have a full understanding of the hard-
ware needed for parallelism. Providing tutorials
and training on programming techniques for those
unfamiliar with the hardware would be great.”

— Chemical and Biological Engineering Researcher1

As computational needs diversify, many researchers lack
familiarity with performance optimization techniques. We
examined the intersection between computational users that
would benefit from different hypothetical speedups and the
hardware that they employ in their research. Our analysis,
discussed in Sections VI-B and IV-B reveals that around
20% of researchers believe a 10× speedup could significantly
impact their work, yet fewer than one-third use GPUs, with
similar findings for cluster usage.

At least one interviewee in the engineering discipline ex-
plicitly mentioned that, while they spend more than 50% of
their research time waiting for runs to complete, they do not
optimize code. Most researchers in this category did not have
a dedicated software or performance engineer. They tend to
work on projects with fewer people involved. These cases
highlight a potential area where focused support could make
a meaningful impact, especially for researchers who currently
lack the resources or expertise to optimize their code. We
believe one major barrier to adopting performance enhancing
techniques, as cited by several researchers in this category, is a
lack of knowledge. This knowledge gap sometimes manifests
as specific programming skills, while other times it is as simple
as knowing how to access clusters to obtain more compute
power.

This observation indicates that we should continue to offer
more training on leveraging performance, targeting both exist-
ing and potential computation-heavy users. Institutions should
establish metrics to avoid “blind spots,” ensuring that users
who could significantly benefit from improved performance
are aware of the available resources.

D. Challenge: Making development tools more user-friendly

As research increasingly relies on computational tasks, the
demand for reliable, efficient, and portable software has grown.
However, the development of tools and practices to meet
these needs has lagged. We have compiled feature requests
for development tools to address these gaps. These requests in-
clude improved auto-completion, enhanced continuous integra-
tion and testing, code auto-generation from natural language,
comprehensive documentation with practical examples, inter-
active development environments akin to Jupyter Notebook
for non-Python languages, advanced package management and
APIs, increased support for code portability and compatibility,

1This quote has been edited for clarity and conciseness.

streamlined project setup processes, and more specialized
needs such as support for scientific coding in Rust, efficient
matrix processing methods, and IDEs tailored to specific
research fields.

“I’d really like a more user-friendly UI. When the
interface looks like it’s from the 90s, it’s difficult
to use. Providing more useful information and tools
in the UI would make the learning process much
faster.”

— Chemistry Researcher1

Despite the advances in programming environments and
computational power, the task of debugging remains a time-
consuming and often daunting aspect of research (§V-B).
We found that the use of debugger has dropped significantly
compared to last study. This may be due to the increased use
of Python. Developers working with Python may find print
statements and code inspection techniques more convenient
and accessible, leading to their increased popularity in the
debugging process. Many interviewees mentioned that they
find debuggers clunky and difficult to use, while some directly
expressed the need for better interactive debugging tools to
reduce the time spent debugging their code, indicating a need
for better debugging interfaces. It is worth noting that some re-
quests are partially fulfilled by recently released large language
models and tools based on them. This once again highlights
the fast-evolving nature of computation, necessitating frequent
revisits of the landscape.

E. Challenge: Handling duplicated and legacy projects
The extensive list of software and packages highlights the

existence of multiple tools serving similar purposes (§IV-C).
For instance, for machine learning, frameworks like PyTorch
and Tensorflow can be used for similar tasks. DMOL3 [15],
Onetep [16], and VASP [17] are focused on similar tasks for
quantum chemistry and solid-state physics. These software
or libraries often have variations tailored to specific research
fields or using different methods, and sometimes the differ-
ences are very nuanced. However, this duplication can lead
to fragmentation within the scientific community, requiring
researchers to learn multiple tools for collaboration or field
transitions. There are existing efforts to create abstractions
to unify different tools, such as OMFIT for magnetically
confined thermonuclear fusion experiments [51], CVXPY for
convex optimization problems [52], [53], Keras for machine
learning [54]. There are also Python/R packages that wrap
computations in more efficient languages, such as Numba [55]
and pyfftw [56], making it easier for researchers to integrate
these tools into their workflows. Extending these efforts to
more fields can be helpful.

Another common issue is with legacy codebases. Re-
searchers frequently expressed frustration over the substantial
time needed to gain proficiency, especially in unfamiliar
programming languages. It can be helpful to have tools to
help transition away from legacy codebases or improve their
portability to fully utilize new software and hardware.



F. Challenge: Supporting machine learning applications

Trends show a significant increase in machine learning
usage across various academic fields over the last decade,
with scholars expressing strong interest in gaining deeper
knowledge and training in its applications.

“Something important would be a lecture series or
educational program on the current workings of AI,
particularly generative programming and ChatGPT,
which are rapidly barreling into our field.”

— Comparative Literature Researcher2

An economics graduate student expressed a desire to dive
deeper into machine learning to uncover new research avenues,
which are currently hindered by their limited understanding
of these techniques. Additionally, a geoscience researcher
focused on climate modeling reported a need for more spe-
cialized machine learning training relevant to their research
areas.

Many researchers have also mentioned a lack of machines
or GPU resources for using machine learning. It is clear
that the demand for machine learning will continue to grow,
underscoring the importance of current research aimed at
making machine learning systems and specialized hardware
more efficient and easier to use.

G. Challenge: Providing adequate and diverse training

More than 30% of researchers requested additional train-
ing. As identified in previous challenges, training can be an
effective way to close knowledge gaps. In fact, 12 respondents
expressed a desire for more technical tutorials on how to fully
utilize existing research infrastructure, while three respondents
sought resources and training on applying machine learning to
their research, addressing two challenges we discussed.

One researcher expressed a wish for educational tools that
are more readily accessible, emphasizing a preference for
“online resources or tutorials that are easy to navigate and uti-
lize.” This sentiment was echoed by another doctoral candidate
who underscored the importance of having clear and concise
documentation, instructions, and readily executable code to
facilitate learning. Another respondent articulated a preference
for a more interactive learning format, specifically highlighting
the value of workshop-style training sessions that allow for
hands-on experience and direct engagement. The quality of
existing educational offerings was a point of contention for
some researchers. One individual lamented the organizational
aspects of classes, suggesting that improvements in structure
and delivery could significantly enhance their willingness
to participate. Conversely, a researcher eager to dive into
computing and programming felt hindered by a lack of in-
formation regarding the availability and location of resources.
This indicates a broader issue within the academic ecosystem,
where potential learners are ready to engage but struggle due
to insufficient guidance and transparency about learning op-
portunities. Additionally, a social sciences researcher called for

2This quote has been edited for clarity and conciseness.

the introduction of more beginner-friendly courses, reflecting
a wider demand for educational pathways that accommodate
individuals at various levels of proficiency and emphasizing
the need for foundational courses for those new to the field.

VIII. TOOLKIT FOR FUTURE SURVEY STUDY

This section presents a generalized toolkit for conducting
similar mixed-methods studies on computational practices
based on our approach. It includes the procedures and reflec-
tive insights from our study and aims to streamline the survey
process for future researchers. As part of this toolkit, several
artifacts have been open-sourced [57], including the complete
survey questionnaire, a collection of Python scripts, and a
spreadsheet to produce tables and figures. More information
can be found in the artifact description appendix.

A. A Typical Procedure

1) Define Research Objectives: Clearly outline the goals of
the study. Identify the specific aspects of computational
practices the study will explore, such as programming
languages, hardware usage, or the impact of computational
speedups on research.

2) Survey Design: Develop a survey that includes both
closed-ended (quantitative) and open-ended (qualitative)
questions. Ensure questions are designed to address the
research objectives and cover areas like computational
backgrounds, current research projects, and needs and
expectations.

3) Approval Process: As a survey project involving human
subjects, this kind of study is subject to the approval of
institutional review board (IRB). Once the survey scope and
questions are clear, it is advisable to seek approval as early
as possible. The approval process varies by institution.

4) Participant Selection: Decide on a sampling strategy such
as random sampling or stratified sampling that aligns with
the study’s needs. Ensure the strategy allows for diverse
representation across disciplines and computational usage
intensities.

5) Data Collection: For qualitative insights, conduct and
record interviews with participants. Ensure interviews are
semi-structured to allow for in-depth exploration of themes
that emerge during the conversation.

6) Data Analysis: Combine quantitative analysis, which fo-
cuses on closed-ended questions and usually presents per-
centages, with qualitative analysis, which delves into open-
ended questions and interviews. Use large language models
to help with identifying patterns and themes in the data.
Section VII-A discusses our analysis framework which can
be a good place to start.

7) Integration of Findings: Synthesize quantitative and qual-
itative findings to provide a comprehensive understanding
of the research objectives. Look for convergences and
divergences in the data to draw nuanced insights.

B. Reflective Insights
1) Participant Selection and Generalizability: In our par-

ticipant selection strategy, which included researchers across



different disciplines and computation backgrounds, we tried to
represent and include the community’s wide-ranging computa-
tional practices. However, it is difficult to engage a sufficiently
large and diverse participant pool to ensure that our findings
generalize to the broader research community beyond the
target institution. Future studies could benefit from expanding
recruitment strategies to include more varied channels and
incentives, enhancing the breadth and depth of participant
engagement. Addressing these challenges will be crucial for
researchers aiming to build upon our work and further advance
our understanding of computational practices in scientific
research.

2) Interviews versus Self-submitted Surveys: The reliance
on self-submitted data introduces the possibility of bias, as
participants may have perceptions of their computational prac-
tices that differ from reality. The limitations of conventional
surveys, often constrained by rigid response options, can
also lead to misinterpretations of participant input. Interviews
provide opportunities to clarify survey questions based on their
background, and also ask follow-up questions to gather more
details. During the data analysis process, the transcripts also
provide the context to realign some answers when necessary.

3) Anecdotal Evidence versus Statistical Analysis: When
relying on interviews or surveys, biases in some responses can
sometimes be obscured by looking at statistical analysis alone.
Given the goal of this study is to understand the computation
practice well enough to provide better support to researchers,
statistics are less valuable than actionable insights. To achieve
a comprehensive understanding of researcher needs, we found
that delving into “anecdotes” by revisiting the complete dis-
cussions in the interview transcripts provides full context.
This enables a deeper exploration of the complexities within
computational workflows.

IX. RELATED WORK

Early studies on scientific software development investi-
gated the state of scientific software development practices,
focusing on how researchers acquire knowledge, their use
of computational resources, and their attitudes towards soft-
ware engineering concepts [58], [59]. These studies found
that scientific software development knowledge was primarily
acquired through self-study and peers and highlighted the need
for improvement in areas such as tool use, documentation,
and testing. Our work builds upon these findings by exploring
the evolution of computational practices and resources over
time, as well as expanding the scope of our investigation
to include a broader range of academic disciplines. The
systematic literature review offers valuable insights into the
applicability of software engineering practices in scientific
software development [60]. The authors found that the major-
ity of claims supported the usefulness of such practices, with
testing and version control being particularly important. Our
study complements this work by examining researchers’ actual
usage of computational resources, as well as their attitudes
towards optimization, reusability, and parallelism. Another

work examines the challenges of effective engagement be-
tween users and developers in scientific software projects [61].
Our study takes these findings into account when exploring
researchers’ needs and expectations regarding computational
resources, providing a more holistic understanding of their
requirements and preferences. Our research builds on prior
work by investigating the evolution of computational practices
and requirements across various academic disciplines [1].
We expand the scope of previous studies by interviewing
a larger and more diverse group of researchers, as well as
by comparing our findings with historical data. This enables
us to identify emerging trends and potential areas for future
advancements.

X. CONCLUSION

This study has revisited and expanded upon a prior study,
exploring the landscape of computational practices within
the same research institution: Princeton University. Through
comprehensive interviews with over a hundred researchers and
a comparison with previous survey results, the study captures
the evolution of computational practices, emerging trends,
and areas requiring further attention. Recognizing the rapidly
evolving nature of the field, the study also includes a toolkit
for repeating this research in the future to streamline the effort
from conducting survey to data analysis. The findings of this
study, along with the toolkit for encouraging frequent revisit
of this topic, serve as a solid foundation for researchers to
continue developing new techniques and systems that advance
computation science.
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Walt and Jarrod Millman, Eds., 2010, pp. 56 – 61.
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Appendix: Artifact Description
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

The paper investigates the evolution of computational prac-
tices in various academic disciplines, identifies emerging
trends, and highlights potential areas for future advancements.
Our study relies primarily on data collected through compre-
hensive interviews with researchers and results of a previous
survey carried out more than a decade ago.

The main contributions of the paper are as follows:

C1 Carrying out a comprehensive survey on researchers’
engagement with computation, encompassing 106
interviews;

C2 Presenting the results and analyses, including identi-
fied trends and challenges;

C3 Reflecting on the survey study process and providing
a “toolkit” for conducting similar research in the
future.

B. Computational Artifacts

A1,2,3 https://doi.org/10.5281/zenodo.12587934
Artifact A1 is the interview questionnaire. Artifact
A2 is the set of Python scripts for generating tables
and figures. Artifact A3 is a spreadsheet that contains
synthetic survey data and equations used to compile
data in Tables 2, 4, 5, and 6.

Artifact ID Contributions Related
Supported Paper Elements

A1 C1, C3 Table 1

A2 C1, C2 Figure 1-3

A3 C1, C2 Table 2, 4, 5, 6

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

Artifact A1 is the survey questionnaire, which includes all
the questions asked to respondents and the multiple-choice
options when applicable. Unlike a traditional computational
artifact, it does not function as a computational process.
Therefore, it does not have “Expected Result”, “Expected
Reproduction Time”, “Artifact Setup”, or “Artifact Execution”
sections.

The questionnaire is included to help other researchers fully
understand the interviews and facilitate future studies.

B. Computational Artifact A2

Relation To Contributions

Artifact A2 consists of Python scripts that generate Figures
1-3 in the paper. These scripts require survey data to function
properly. Currently, the necessary survey data is not included,
meaning the scripts alone cannot reproduce the figures. To
create the figures, one must first prepare the specified CSV
files filled with the survey data; then, the scripts can be
executed to produce the figures as presented in the paper.

Expected Results

When run with our survey data, the expected results is an
exact replica of Figures 1-3 in the paper. When run with other
survey data, the results will reflect the input data, in the style
and format of Figures 1-3.

Expected Reproduction Time (in Minutes)

Using our data, the expected time to produce Figure 1-3
is around or under one second. Using other data, the time to
produce the figures is proportional to the size of the dataset.
We do not expect any survey data to be significantly large that
would require more than a few seconds to process.

Artifact Setup (incl. Inputs)

Hardware: No specific hardware is required.
Software: Python 3.x
Datasets / Inputs: CSV files should match the specific data

requirements detailed in the comments in the script. Each CSV
file needed for input includes descriptions of the necessary
fields and the corresponding data.

Installation and Deployment: Run the specified scripts in a
Python environment.

Artifact Execution

Run the specified scripts in a Python environment, giving
a CSV file path where indicated. Run the code in the order
provided in the scripts.

Artifact Analysis (incl. Outputs)

The scripts should output figures in the style of Figures 1-3.

C. Computational Artifact A3

Relation To Contributions

Artifact A3 is a spreadsheet with synthetic data and spread-
sheet equations used to compile data in Tables 2, 4, 5 and
6. Owing to data privacy and confidentiality regulations, the
authentic data cannot be made public. This dataset underpins
the data compilation procedures used to populate data in tables
throughout the paper.

Similar to artifact A1, A3 is not a computational tool and
thus does not require sections such as “Expected Result”,
“Expected Reproduction Time”, “Artifact Setup”, or “Artifact
Execution” sections.
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