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Abstract—This paper presents CIFER, the world’s first open-
source, fully cache-coherent, heterogeneous many-core, CPU-
FPGA SoC. The 12nm, 16mm2 chip integrates four 64-bit, OS-
capable, RISC-V application cores; three TinyCore clusters that
each contain six 32-bit, RISC-V compute cores (18 in total);
and an EDA-synthesized, standard-cell-based eFPGA. CIFER
enables the decomposition of real-world applications and tailored
execution (parallelization or specialization) per decomposed task.
Our evaluation shows that: 1) the TinyCore clusters increase the
throughput and energy efficiency of data- and thread-parallel
tasks by up to 7.95× and 7.75× over one 64-bit core, respectively;
2) the eFPGA increases the throughput and energy efficiency
of hardware-accelerable tasks by up to 9.29× and 10.62×,
respectively; 3) using coherent caches for data transfer between
the processors and the eFPGA increases the throughput and
energy efficiency by up to 11.1× and 10.5×, respectively.

I. INTRODUCTION

The drive for performance and energy efficiency in the
post-Moore era has given rise to hardware acceleration and
heterogeneous integration. However, the high design cost
and programming complexity impede the broad adoption of
heterogeneous system-on-chips (SoC).

This work presents CIFER [1] (Fig. 1), the world’s first
open-source, fully cache-coherent, heterogeneous many-
core, CPU-FPGA SoC. By integrating OS-capable pro-
cessors, parallel compute cores, and an embedded FPGA
(eFPGA), CIFER enables efficient execution of various work-
loads across the parallelism-specialization spectrum.

CIFER lowers the design cost and the programming bar-
rier with the following novelties. First, it demonstrates agile
hardware development facilitated by open-source hardware.
CIFER was designed in seven months during the pandemic by
a team of graduate students and postdocs collaborating across
two institutions, due in part to the use of many open-source
projects, including OpenPiton [2], BYOC [3], PyMTL3 [4],
PyOCN [5], Ariane [6], and PRGA [7]. Second, the eFPGA
is synthesized with off-the-shelf electronic design automation
(EDA) tools and standard cell libraries. Compared to the
conventional, full-custom FPGAs, CIFER’s synthesizable eF-
PGA is customizable in architecture, technology-agnostic, and

1 This work was done while Ting-Jung Chang was at Princeton.
2 This work was done while Shady Agwa was at Cornell.
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Fig. 1: CIFER Package and Die Photos
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Fig. 2: CIFER SoC Architecture

flexible in physical layout. Third, CIFER implements different
cache coherence schemes that are optimal for each processing
unit, and unifies them within a global, bi-directionally coherent
cache system.

II. ARCHITECTURE

The CIFER architecture (Fig. 2) integrates a 2×4 mesh
of tiles and an eFPGA into the distributed, coherent, Open-
Piton [2] P-Mesh cache system over three packet-switched,
on-chip networks (OCN) designed with PyOCN [5]. Each tile
consists of a shard of the coherence system and one of the
following: an Ariane core, a TinyCore cluster, or an eFPGA
controller. Each coherence shard contains a private, 8KB, L2
cache and a 64KB slice of the shared, 512KB, last-level cache
(LLC). Coherence between the L2 caches and the LLC is
maintained in hardware with a directory-based MESI protocol.
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A. Ariane: OS-Capable Processor
Ariane [6] is an OS-capable, 64-bit, RISC-V processor

with a six-stage in-order pipeline, a 16KB L1 instruction
(L1I) cache, an 8KB L1 data (L1D) cache, and a double-
precision floating-point unit (FPU). Coherence between Ari-
ane’s L1 caches and the L2 cache is maintained in hardware
through adaptation to BYOC’s Transaction Response Interface
(TRI) [3]. CIFER is the first silicon instantiation of BYOC.

B. TinyCore Cluster: Thread-Level Parallel Array
Each TinyCore cluster contains six 32-bit, RISC-V cores

organized into three pairs. The six cores use a MIMD execu-
tion model, where each core executes an independent stream
of instructions. Each core has a six-stage, in-order issue, out-
of-order write-back, late-commit, scalar pipeline. To address
write-after-write and write-after-read hazards during out-of-
order execution, each core supports limited register renaming
with more physical registers (40 integer and 40 floating-point)
than the 32 architectural registers specified in the RISC-V ISA.

Each core has a private, 4KB L1D cache, while a pair of
cores share a 4KB L1I cache, an integer multiply-divide unit
(MDU), and a single-precision FPU. A small L0 instruction
buffer is added to each core’s front-end to minimize the latency
impact of sharing the L1I cache. Coherence between the L1D
caches and the L2 cache is managed explicitly in software by
inserting special cache flush and invalidation instructions. In
particular, a cache flush traverses the L1D cache to write back
each dirty cache line, while a cache invalidation clears the
valid bits of the clean cache lines. Cache invalidation requests
from the L2 cache are not propagated to the L1D caches.
Sharing long-latency arithmetic units and reducing coherence
hardware maximize computation density in each cluster.

C. Embedded FPGA: Reconfigurable Hardware Accelerator
The eFPGA (Fig. 3) is designed with PRGA [7]. It has

6720 multi-mode LUT6s and 18 24Kbit, dual-port, block
RAMs (BRAM). Hard-wired adder/carry chains are used for
efficient emulation of arithmetic operations. The BRAMs
support different word sizes, e.g., 512×48b, 1024×24b, ...,
24K×1b. eFPGA-emulated, ”soft” accelerators can be built
with an open-source, RTL-to-bitstream toolchain consisting of
Yosys [8], VPR [9], and PRGA’s bitstream assembler.

The eFPGA contains three key novelties: First, the switch
blocks implement a cycle-free connection pattern [10], fa-
cilitating automated, constraint-driven, area and timing opti-
mization at the array level using off-the-shelf EDA tools. In
comparison to the conventional FPGA design flow in which
locally optimized blocks are tessellated in a predefined grid,
this approach improves the power, performance, and area
(PPA) of the synthesized FPGA by letting the EDA tools
explore a larger design space. Second, the eFPGA is designed
as a three-level hierarchy to balance PPA optimization and
EDA runtime. The eFPGA is partitioned into two types of
sub-arrays, namely logic array and IO/BRAM array, which
are then composed of logic blocks. Third, the eFPGA uses a
hierarchical configuration network clocked by a multi-source
clock mesh. This enables fast and partial reconfiguration of
the eFPGA at GHz clock frequency. In particular, each sub-
array contains a bitstream router and a single-bit scanchain
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Fig. 3: CIFER eFPGA Architecture

that connects all the configuration cells with minimum routing
metal usage. Bitstream segments are first sent to the bitstream
routers over an 8-bit, packet-switched network, then buffered
and shifted into the scanchains.

The eFPGA is integrated with the system through the
eFPGA controller, the first silicon instantiation of Duet [11],
which contains the following two interfaces. The control
register interface allows the processors to access the eFPGA
via memory-mapped I/O. The coherent memory interface is
configurable at runtime to enable non-coherent, IO-coherent,
or bi-directionally coherent memory accesses of the eFPGA.
In bi-directionally coherent mode, cache invalidation requests
from the L2 cache are forwarded into the eFPGA, allowing the
accelerator to include a ”soft” cache. Atomic requests from the
eFPGA are also supported, enabling low-overhead synchro-
nization in user mode. Both interfaces contain asynchronous
FIFOs for clock domain crossing and are equipped with timers
and parity checks to protect the OCN and the memory system
from software or accelerator bugs.

D. Heterogeneous Cache Coherence
One key contribution of CIFER is that it unifies the het-

erogeneous cache coherence schemes of each processing unit
within a global, fully coherent cache system. This minimizes
the communication overhead and maximizes the programma-
bility of the SoC. For example, a task-parallel work-stealing
runtime [12] facilitates parallel execution across the Ariane
cores and the TinyCore clusters, leveraging the coherent
caches and automating the insertion of cache management in-
structions. An eFPGA-emulated accelerator can be efficiently
invoked by passing the memory addresses of the data to
be processed. Depending on the computation, the accelerator
can either copy a continuous chunk of data into its BRAM
scratchpad or read/write memory in a random, byte-granular
manner. This saves CPU cycles from explicitly managing data
movement and prevents over-fetching from the eFPGA.
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III. EVALUATION

Fig. 4 shows our chip testing setup. Fig. 5 shows each
component’s maximum operating frequency (Fmax) across the
range of functional supply voltages. The eFPGA’s Fmax de-
pends on the emulated design, and Fig. 5 shows the Fmax of a
64-bit LFSR. Fig. 6 shows the area breakdown of the chip. The
eFPGA’s logic and routing resources only make up a quarter
of the eFPGA’s total area, while the configuration memory
consumes another quarter. The eFPGA’s low area utilization
is due in part to the hierarchical design and can be improved
with abutted or narrow-channel macro-placement strategies.

Table I compares CIFER with other state-of-the-art CPU-
FPGA SoCs targeting the edge/IoT domain. Due to tooling
issues, we did not implement explicit clock-gating on the
eFPGA’s configuration clock, which should be disabled except
when loading the bitstream. Post-layout power analysis shows
that the configuration clock sub-tree consumes about 90% of
the chip’s total clock power due to the high total capacitance
and short-circuit current of the clock meshes. We estimate
the total power with proper clock-gating by subtracting the
analyzed configuration clock power from the measured total
power. Estimated numbers are shown in brackets, next to their
measured counterparts in the table.
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CIFER runs up to 1195MHz at 1.1V. The processors provide
high aggregate performance with good energy efficiency, total-
ing 15.54 GFLOPS at 1.1V and 53.18 GFLOPS/W (estimated
as explained above) at 0.7V, outperforming the next best SoC
by 8.0× and 1.4×. The eFPGA’s area efficiency is 1541
LUT6/mm2, outperforming the other synthesizable eFPGAs
by 11.2×, and is only 1.3× worse than the best full-custom
eFPGA. The eFPGA’s peak performance (1.92 MOPS/LUT,
126MHz at 1.1V) and energy efficiency (148.1 GOPS/W at
0.7V) are measured with a 64-point FFT that utilizes 97%
of the logic blocks and 75% of the BRAMs. The 3.4×
performance gap and the 2.1× energy efficiency gap between
the full-custom eFPGA and this work can be attributed to three
factors: (1) CIFER is synthesized with standard cells; (2) our
eFPGA has no hardware multiply-accumulate units; and (3)
this work uses an open-source RTL-to-bitstream toolchain.

Fig. 7 shows the throughput improvements and energy
savings when data are transferred through the coherent caches
instead of memory-mapped I/O. The improvements are due
to two reasons: (1) memory-mapped I/O accesses are strictly
serialized in the processor’s pipeline, while coherent caches
may hide the latency of consecutive memory accesses, e.g.,
by buffering memory requests in the asynchronous FIFOs; (2)
the eFPGA can use the L2 cache co-located in the eFPGA
controller tile which runs in the fast, processors’ clock domain.
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This Work TCAS’20 [13] ISSCC’19 [14] TVLSI’21 [15] JSSC’22 [16]

Chip

Technology 12nm FinFET 90nm BCD 40nm CMOS + 22nm FD-SOI 16nm FinFET39nm MRAM
Die Area (mm2) 16 1.78 22.09 9 25

Vnom (Vmin - Vmax) 0.8 (0.68 - 1.1) 1.2 (-) - (1.1 - 1.3) 0.8 (0.5 - 0.8) 0.8 (0.5 - 1.05)
Active Power (mW) Vnom 1792 1.2 5.34 24.95 918

Fmax (MHz) Vmax 1195 10 200 600 972

CPU

Host
Core Type 4× Ariane RI5CY Cortex-M0 RI5CY 2× Cortex-A53

ISA RV64GC RV32I ARMv6-M RV32IMFC ARMv8-A
CoreMark Score Vmax 7918 31.9 466 1914 6376

Other

Core Type 18× TinyCore

N/A N/A N/A

Cortex-M0
ISA RV32IMAF ARMv6-M

Function Parallel Compute Monitor
CoreMark Score Vmax 19198 2265

Total Peak GFLOPS Vmax 15.54 NO HW FPU NO HW FPU NO HW FPU 1.94
Peak GFLOPS/W Vmep 6.63 [53.18†] 38.03

eFPGA

IP Synthesizable Synthesizable Unknown Full-Custom Full-Custom
w/ Std. Cells w/ Std. Cells Hard Macro Hard Macro

Min. Prog. Time (µs) 239.4 - 1274.8 - - - 450
LUT Type & Count 6720 LUT6 48 LUT6 1176 LUT6 6000 LUT4 8760 LUT6

Logic Density (LUT/mm2) 1541 137 36 1505 1991
Fmax (MHz) Vmax 300** 1.25 200 193 747
MOPS/LUT Vmax 1.92‡ (INT8) - - 0.02 (INT32) 6.45 (INT8)

GOPS/W Vmep 148.1‡* (INT8) - - 29.1 (INT32) 312.4 (INT8)
Shared Memory BW CPU → eFPGA 201 Non-Coherent Non-Coherent Non-Coherent -

(MB/s) [Vmax] eFPGA → CPU 558 486
† Estimated power dissipation, excluding the eFPGA’s configuration clock power based on post-layout power analysis

** Measured when the eFPGA emulates a 64-bit LFSR
‡ Measured when the eFPGA emulates an INT8-precision, complex, 64-point FFT
* Measured power dissipation in the eFPGA’s user clock domain

TABLE I: Comparison to the State of the Art

Fig. 8 shows the throughput and energy efficiency gains
by offloading four representative edge applications to their
preferred compute unit. SORT and SHA-256 use eFPGA-
emulated accelerators, while GEMM and JACOBI2D use the
TinyCore clusters. The execution time is measured from when
an Ariane core initiates a task to when the same core reads
back all the results. All the control overhead is included, while
the data transfer overhead is mitigated by overlapping compute
with ad hoc, coherent memory accesses. At nominal voltage
(0.8V), the eFPGA outperforms the Ariane-only baseline by
up to 9.29× in throughput and 10.62× in energy efficiency;
the TinyCore clusters improve the performance and energy
efficiency by up to 7.95× and 7.75×, respectively.

IV. CONCLUSION

This paper presents CIFER. Through cache-coherent in-
tegration of OS-capable processors, parallel many-core ar-
rays, and an eFPGA, CIFER improves performance and
energy efficiency on a wide range of workloads across
the parallelism-specialization spectrum. The heterogeneous
cache coherence scheme minimizes communication overhead
and maximizes the programmability of the SoC. The EDA-
synthesized, standard-cell-based eFPGA’s area efficiency, peak
performance, and energy efficiency are approaching those of
full-custom eFPGAs.
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